Direct Contact of High-k/Si Gate Stack for EOT below 0.7 nm using LaCe-silicate Layer with V_{fb} controllability

K. Kakushima, T. Koyanagi, D. Kitayama, M. Kouda, J. Song, T. Kawanago, M. Mamatrishat, K. Tachi,

M. K. Bera, P. Ahmet, H. Nohira*, K. Tsutsui, A. Nishiyama, N. Sugii, K. Natori, T. Hattori, K. Yamada** and H. Iwai

Tokyo Institute of Technology, 4259, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

*Tokyo City University, 1-28-1, Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan

**Waseda University, 513, Waseda Tsurumaki, Shinjyuku-ku, Tokyo 162-0041, Japan

Tel. +81-45-924-5847, Fax. +81-45-924-5846, kakushima@ep.titech.ac.jp

Abstract

A direct high-k/Si gate stack has been proposed for gate oxide scaling. With LaCe-silicate, an EOT of 0.64 nm with an average dielectric constant (k_{av}) of 17.4 has been obtained and an extremely low gate leakage current (J_g) of 0.65 A/cm². The flatband voltage (V_{fb}) can be controlled by the compositional ratio of La in the LaCe-silicate layer. Furthermore, incorporation of Ge atom into the silicate layer can effectively shift the V_{fb} to positive direction.

Introduction

The scaling in gate dielectric below equivalent oxide thickness (EOT) of 0.7 nm essentially requires a technique to directly contact high-k dielectrics to Si substrate with good interfacial property [1]. Several techniques, including cycle deposition and annealing, or oxygen scavenging process, have been so far reported to achieve a direct contact of high-k/Si structure [2,3]. The high-k/Si interface with HfO₂ is sensitive to the oxygen partial pressure during the process, so that one must choose a process within a window to achieve a direct high-k/Si structure (Fig.1). On the other hand, La₂O₃ can achieve a direct high-k/Si interface by forming a silicate layer with fairly nice interface properties [4]. However, the excess formation of silicate results in the increase in EOT. CeO₂ has an advantage in the wide process window to achieve a direct high-k/Si interface. In terms of gate leakage current (J_g) , silicates have advantage in widening the band gap at the cost of EOT (Fig.2). Therefore, this work focuses on the combination of a Si-rich Ce-silicate with La₂O₃ to achieve a direct high-k/Si interface with both reduction in J_g and EOT.

Experimental

MOS capacitors and transistors were fabricated on HF-last n-type Si (100) substrates (Fig.3). A thin layer of CeO₂ followed by La₂O₃ layer was successively deposited by MBE in an ultra high vacuum chamber. A sputter deposited metal gate stack of W(4 nm) and TaSi₂ (36 nm) was *in situ* deposited on the high-k. All samples went through 800 °C for 2 sec by rapid thermal annealing. The intermixing of La and Ce atoms were confirmed by XPS analysis, especially when annealed at high temperature (Fig.4).

Results and Discussion

Cross sectional TEM image of LaCe-silicate layer formed by stacking and annealing of $La_2O_3/CeO_2(2.7/1nm)$ shows a direct high-k/Si structure with a uniform contrast without any μ -crystallization (Fig.5). The formation of a LaCe-silicate

layer was confirmed by x-ray photoelectron Si 1s spectra (Fig.6). Fig.7 shows the capacitance-voltage (C-V)characteristics of the capacitors with different amount of La2O3 by changing the stacking thickness on a 1-nm thick CeO₂ layer. Conductance method revealed that the interfacial state densities (D_{it}) were ~10¹¹ cm⁻²/eV. While increasing the thickness of La2O3 from 2.1 to 2.7 nm, an increase in accumulation capacitances was observed. The EOT dependence on the La₂O₃ thickness revealed a minimum point at La_2O_3 thickness of 2.7 nm, where the smallest EOT of 0.64 nm, corresponding to a k_{av} of 17.4, was obtained (Fig.8). Owing to the increase in k_{av} accompanied by possible increase in the conduction band (CB) offset, the smallest $J_{\rm g}$ was obtained with a La₂O₃ thickness of 2.7 nm (Fig.9). The J_g at V_{g} =1V decreased even with reducing the EOT (Fig.10). The composition of the silicate layer can be considered as $La_{1.5}Ce_{0.5}SiO_5$. The flatband voltage (V_{fb}) showed a positive shift while increasing the amount of La2O3, indicating the possibility to control the $V_{\rm th}$ (Fig.11). Further positive $V_{\rm fb}$ shift can be achieved by sub-mono layer (ML) incorporation of Ge atoms into the oxide (Fig.12). An additional positive $V_{\rm fb}$ shift of 0.15 V can be obtained by combining the incorporation of Ge atoms with the amount of La₂O₃ without any cost in EOT (Fig.13). I_{d} - V_{g} characteristics of nFETs showed a positive shift in $V_{\rm th}$ by increasing the amount of La₂O₃, which is in good agreement with the shift observed with MOS capacitors. The subthreshold swings (SS) of the nFETs were within 80 mV/dec., indicating fairly nice interface property of LaCe-silicate/Si sub.

Conclusions

By employing La_2O_3 on a thin CeO₂, a direct high-k/Si gate stack can be achieved by forming a uniform LaCe-silicate gate dielectric. A dielectric constant of 17.4 with an excellent leakage current suppression and fairly nice interface properties has been obtained. An effective control of flatband voltage has been demonstrated by changing the composition of La atoms, and the incorporation of Ge atoms. LaCe-silicate can be a strong candidate to achieve a direct high-k/Si with large process window.

References

[1] ITRS 2008 update.

- [2] M. Takahashi, et al., IEDM, p. 523 (2007).
- [3] T. Ando, et al., IEDM, p. 423 (2009).
- [4] K. Kakushima, et al., ESSDERC, p.126 (2008).

Fig.1 Control of O_2 partial pressure is essential to control the oxygen defects or the SiO₂ formation **Fig.2** Summary of high-k/Si gate stack with HfO₂ gate dielectric have been proposed. (i) cycle-deposition and annealing technique [2], (ii) oxygen scavenging technology by either oxides or metal to reduce the intentionally formed SiO₂-IL [3]. **Fig.2** Summary of high-k gate die focuses on the converse of CeO₂ over La₂O₃ and HfO₂ for direct high-k/Si structure.

Fig.3 Fabrication process of MOS capacitors and transistors using gate last process.

Fig.7 *C-V* characteristics with different La_2O_3 thickness on a 1-nm-thick CeO₂ layer. With La_2O_3 thickness of 2.7 nm, an EOT of 0.64 nm is achieved. Conductance method revealed the interfacial state density of ~10¹¹ cm⁻²/eV.

Fig.11 $V_{\rm fb}$ shift on EOT with different La₂O₃ thickness a 1.0-nm-thick CeO₂ layer. Positive shift in $V_{\rm fb}$ can be obtained by thickness control of La₂O₃ layer.

Fig.4 Intensity ratio of Ce $3d_{5/2}$ to La $3d_{5/2}$ by angle-resolved XPS analysis confirms the silicate layer and the intermixing of Ce and La atoms, especially when annealed at high temperature.

Fig.8 La₂O₃ thickness dependent EOT on a 1-nm thick CeO₂ after annealing at 800 °C. With the increasing in La₂O₃ thickness, the reduction in EOT take place owing to the increase in k_{av} . A kay of 17.4 was obtained with La₂O₃ of 2.7 nm.

Fig.12 *C-V* characteristics with Ge of 0.5 and 1 ML at CeO_2/Si interface Further positive shift can be achieved by trace amount of Ge atoms.

Fig.5 Cross sectional TEM image of La₂O₃/CeO₂ after annealing at 800 °C. A direct high-k/Si structure is confirmed. A uniform contrast indicates a compositional uniformity.

Fig.9 TZDB characteristics with different La_2O_3 thickness on a 1.0nm thick CeO_x . La_2O_3 with a thickness of 2.7 nm showed the lowest J_g presumable due to optimum relation in the CB band offset with silicate thickness.

Fig.13 $V_{\rm fb}$ shift with different La₂O₃ thickness on a 1-nm thick CeO₂ with 0.5 ML of Ge atoms. Positive control in $V_{\rm fb}$ can be achieved without any degradation in the EOT.

Fig.2 Summary of band gap and *k* of high-k gate dielectrics. This work focuses on the combination of La_2O_3 with Ce-silicate to suppress the SiO₂-IL growth, enabling higher *k* with reduced J_g .

Fig.6 XP spectra of Si 1s of the sample shown in fig.5. LaCe-rich silicate was identified.

Fig.10 J_g -EOT relation with different La₂O₃ thickness on a 1.0-nm thick CeO₂. Reduction in J_g with smaller EOT can be obtained. A J_g of 0.51 A/cm² at EOT=0.64 nm was obtained, which is 10⁴ times smaller than the ITRS requirements.

Fig.14 A shift in V_{th} was also confirmed with MOSFET. SS of 100 mV/dec. confirms a fairly nice interface property.