Future of Micro/Nano Electronics

August 17, 2011

@Xiamen University

Xiamen, China

Hiroshi Iwai, Tokyo Institute of Technology

1

Tokyo Institute of Technology Founded in 1881, Promoted to Univ. 1929

Institute Overview

Established in 1881→ 130th anniversary in 2011

3 undergraduate schools

School of Science, School of Engineering, School of Bioscience and Biotechnology

Einstein Visit

7 graduate schools

Science and Engineering Science, Science and Engineering Technology,

Bioscience and Biotechnology, Interdisciplinary Graduate School of Science and Engineering,

Information Science and Engineering, Decision Science and Technology, Innovation Management

Total Number of Students

	Undergraduate	Graduate	Master's	Doctoral	Teaching Staff	Student/Instructor	Staff
Tokyo Inst.	5,000	5,000	3,500	1,500	1,200	8.3	550
Per Year	1,200		1,800	500			

International Students

複合創造領域

| 先端ナノエレクトロニクス研究コアユニット研究室メンバー

Innovative Platform for Education and Research

Nanoelectronics Research Frontier Core Unit

(2010年10月1日現在)

Cluster tool for high-k thin film deposition

- There were many inventions in the 20th century: Airplane, Nuclear Power generation, Computer, Space aircraft, etc
- However, everything has to be controlled by electronics
- Electronics

Most important invention in the 20th century

• What is Electronics: To use electrons, Electronic Circuits

Lee De Forest

Electronic Circuits started by the invention of vacuum tube (Triode) in 1906

Thermal electrons from cathode controlled by grid bias

Same mechanism as that of transistor

First Computer Eniac: made of huge number of vacuum tubes 1946 Big size, huge power, short life time filament

 \rightarrow dreamed of replacing vacuum tube with solid-state device

Today's pocket PC made of semiconductor has much higher performance with extremely low power consumption

J. E. LILIENFELD

DEVICES FOR CONTROLLED ELECTRIC CURRENT

Filed March 28, 1928

J.E.LILIENFELD

Capacitor structure with notch

0 bias for gate

Surface Potential (Negative direction)

Positive bias for gate

However, no one could realize MOSFET operation for more than 30 years.

Because of very bad interface property between the semiconductor and gate insulator

Even Shockley!

Drain Current was several orders of magnitude smaller than expected

Even Shockley!

However, they found amplification phenomenon when investigating Ge surface when putting needles. This is the 1st Transistor: **Not Field Effect Transistor, But Bipolar Transistor (another mechanism)**

<u>1947</u>: 1st transistor

J. Bardeen W.

W. Shockley

Bipolar using Ge

1958: 1st Integrated Circuit

Jack S. Kilby

Connect 2 bipolar transistors in the Same substrate by bonding wire.

1960: First MOSFET by D. Kahng and M. Atalla **Top View**

Si/SiO2 Interface is extraordinarily good

1970,71: 1st generation of LSIs

MPU Intel 4004 **DRAM** Intel 1103 B. B. B. B. B. B.

MOS LSI experienced continuous progress for many years

Nar	ne of Integrated Circuits	Number of Transistors
1960s	IC (Integrated Circuits)	~ 10
1970s	LSI (Large Scale Integrated	Circuit) ~1,000
1980s	VLSI (Very Large Scale IC)	~10,000
1990s	ULSI (Ultra Large Scale IC)	~1,000,000
2000s	?LSI (? Large Scale IC)	~1000,000,000

Most recent SD Card

Most Recent SD Card

128GB = 128G Bite = 128G X 8bit = 1024Gbit = 1.024T(Tera)bit

$$1T = 10^{12} = 1Trillion$$

World Population: 6 Billion Brain Cell: 10 ~ 100 Billion Stars in Galaxy: 100 Billion

Most Recent SD Card

2.4cm X 3.2cm X 0.21cm

Volume: 1. 6cm³ Weight: 2g

Voltage: 2.7 - 3.6V

Old Vacuum Tube: 5cm X 5cm X 10cm, 100g,100W

1Tbit = 10k X10k X 10k bit

Volume = 0.5km X 0.5km X 1km = 0.25 km³ = 0.25X10¹²cm³

Weight = $0.1 \text{ kgX} 10^{12} = 0.1 \text{ X} 10^{9} \text{ton} = 100 \text{ M}$ ton Power = $0.1 \text{ kWX} 10^{12} = 50 \text{ TW}$

Supply Capability of Tokyo Electric Power Company: 55 BW₂₄

When NMOS is ON, PMOS is OFF When PMOS is ON, NMOS is OFF

Needless to say, but....

<u>CMOS Technology:</u> Indispensible for our human society

All the human activities are controlled by CMOS

living, production, financing, telecommunication, transportation, medical care, education, entertainment, etc.

Without CMOS:

There is no computer in banks, and

world economical activities immediately stop.

Cellarer phone dose not exists

Downsizing of the components has been the driving force for circuit evolution

1900	1950	1960	1970	2000
Vacuum Tube	Transistor	IC	LSI	ULSI
10 cm	cm	mm	10 µm	100 nm
10 ⁻¹ m	10 ⁻² m	10 ⁻³ m	10 ⁻⁵ m	10 ⁻⁷ m

In 100 years, the size reduced by one million times. There have been many devices from stone age. We have never experienced such a tremendous reduction of devices in human history. Downsizing

1. Reduce Capacitance

- → Reduce switching time of MOSFETs
- Increase clock frequency
 - Increase circuit operation speed
- 2. Increase number of Transistors
- → Parallel processing
 - Increase circuit operation speed

Downsizing contribute to the performance increase in double ways

Thus, downsizing of Si devices is the most important and critical issues.

Scaling Method: by R. Dennard in 1974

Geometry & Supply voltage	L _g , W _g T _{ox,} V _{dd}	К	Scaling K: K=0.7 for example
Drive current in saturation	I _d	К	$I_{d} = v_{sat}W_{g}C_{o}(V_{g}-V_{th}) \qquad C_{o}: \text{ gate C per unit area}$ $\longrightarrow W_{g}(t_{ox}^{-1})(V_{g}-V_{th}) = W_{g}t_{ox}^{-1}(V_{g}-V_{th}) = KK^{-1}K = K$
l _d per unit W _g	l _d /μm	1	I_d per unit $W_g = I_d / W_g = 1$
Gate capacitance	Cg	К	$C_g = \varepsilon_o \varepsilon_{ox} L_g W_g / t_{ox} \longrightarrow KK / K = K$
Switching speed	τ	К	$\tau = C_g V_{dd} / I_d \longrightarrow KK / K = K$
Clock frequency	f	1/K	$f = 1/\tau = 1/K$
Chip area	A _{chip}	α	α : Scaling factor \longrightarrow In the past, $\alpha > 1$ for most cases
Integration (# of Tr)	N	α/K^2	N $\rightarrow \alpha/K^2 = 1/K^2$, when $\alpha = 1$
Power per chip	Р	α	$fNCV^{2}/2 \longrightarrow K^{-1}(\alpha K^{-2})K(K^{1})^{2} = \alpha = 1, \text{ when } \alpha = 1$

$k = 0.7^2 = 0.5$ and $\alpha = 1$		
$Vdd \rightarrow 0.5$		
$\int dd = 0.5$		
$Lg \rightarrow 0.5$		
$Cg \rightarrow 0.5$		
P (Power)/Clock		
$\rightarrow 0.5^3 = 0.125$		
τ (Switching time) \rightarrow 0.5		
N (# of Tr) \rightarrow 1/0.5 ² = 4		
f (Clock) \rightarrow 1/0.5 = 2		
P (Power) → 1		

Actual past downscaling trend until year 2000

Vd scaling insufficient, α increased

N, Id, f, P increased significantly 3

Many people wanted to say about the limit. Past predictions were not correct!!

Period	Expected limit(size)	Cause
Late 1970's	1µm:	SCE
Early 1980's	0.5µm:	S/D resistance
Early 1980's	0.25µm:	Direct-tunneling of gate SiO ₂
Late 1980's	0.1µm:	'0.1µm brick wall'(various)
2000	50nm:	'Red brick wall' (various)
2000	10nm:	Fundamental?

Historically, many predictions of the limit of downsizing.

VLSI text book written 1979 predict that 0.25 micrometer would be the limit because of directtunneling current through the very thin-gate oxide.

FAD

C. Mead L. Conway

VLSI textbook

Finally, there appears to be a fundamental limit ¹⁰ of approximately quarter micron channel length, where certain physical effects such as the tunneling through the gate oxide begin to make the devices of smaller dimension unworkable.

Direct-tunneling effect

Drain current: Id \propto 1/Gate length (Lg) Lg \rightarrow small,

Then, $Ig \rightarrow small$, $Id \rightarrow large$, Thus, $Ig/Id \rightarrow very small$

41

Do not believe a text book statement, blindly!

Never Give Up!

No one knows future!

There would be a solution!

Think, Think, and Think!

Or, Wait the time! Some one will think for you

Transistor Scaling Continues

Qi Xinag, ECS 2004, AMD

5 nm gate length CMOS

Downsizing limit!

Channel length Gate oxide thickness

Ultimate limitation

- 1.2nm physical SiO2 in production (90nm logic node)
- 0.8nm physical SiO2 in research transistors

By Robert Chau, IWGI 2003

So, we are now in the limitation of downsizing?

Do you believe this or do not?

There is a solution! K: Dielectric Constant To use high-k dielectrics

However, very difficult and big challenge!

Remember MOSFET had not been realized without Si/SiO₂!

Choice of High-k elements for oxide

		Ca	andi	dat	es								(a	Gas at 10	or I)00	iqui K	HfO ₂ based dielectrics					
н		Un	stal	ole	at s	Si i	nte	rfa	ce				Ra	adio	act	ive	first generation materials, because of					
Li	Be	Si + MO_X Ni + SiO ₂ Si + MO_X MSi _X + SiO ₂											С	N	0	F	Ne	their merit in 1) band-offset, 2) dielectrie constant				
Na	Mg		Si	+ N	10 _x	Μ	+ N	ISi _x	O _Y			ΑΙ	Si	Р	S	Cl	Ar	3) thermal stability				
К	Са	Sc	Ti	v	Cr	Mn	Fc	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr					
Rh	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rb	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe	La ₂ O ₃ based dielectrics are				
Cs	Ва		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ТΙ	Pb	Bi	Ро	At	Rn	thought to be the next generation materials,				
Fr	Ra		Rf	На	Sg	Ns	Hs	Mt										which may not need a thicker interfacial				
		La	Сe	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		layer				

Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

R. Hauser, IEDM Short Course, 1999 Hubbard and Schlom, J Mater Res 11 2757 (1996)

Conduction band offset vs. Dielectric Constant

XPS measurement by Prof. T. Hattori, INFOS 2003

High-k gate insulator MOSFETs for Intel: EOT=1nm

EOT: Equivalent Oxide Thickness

SiO_x-IL growth at HfO₂/Si Interface

Phase separator

HfO₂ + Si + O₂ HfO₂ + Si + 2O* HfO₂ + SiO₂ H. Shimizu, JJAP, 44, pp. 6131 Oxygen supplied from W gate electrode D.J.Lichtenwalner, Tans. ECS 11, 319 SiO_x-IL is formed after annealing Oxygen control is required for optimizing the reaction

Choice of High-k elements for oxide

		Ca	andi	dat	es								(a	Gas at 10	or I)00	iqui K	HfO ₂ based dielectrics					
н		Un	stal	ole	at s	Si i	nte	rfa	ce				Ra	adio	act	ive	first generation materials, because of					
Li	Be	Si + MO_X Ni + SiO ₂ Si + MO_X MSi _X + SiO ₂											С	N	0	F	Ne	their merit in 1) band-offset, 2) dielectrie constant				
Na	Mg		Si	+ N	10 _x	Μ	+ N	ISi _x	O _Y			ΑΙ	Si	Р	S	Cl	Ar	3) thermal stability				
К	Са	Sc	Ti	v	Cr	Mn	Fc	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr					
Rh	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rb	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe	La ₂ O ₃ based dielectrics are				
Cs	Ва		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ТΙ	Pb	Bi	Ро	At	Rn	thought to be the next generation materials,				
Fr	Ra		Rf	На	Sg	Ns	Hs	Mt										which may not need a thicker interfacial				
		La	Сe	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		layer				

Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

R. Hauser, IEDM Short Course, 1999 Hubbard and Schlom, J Mater Res 11 2757 (1996)

La-Silicate Reaction at La₂O₃/Si Direct contact high-k/Si is possible

La₂O₃ can achieve direct contact of high-k/Si

58

EOT = 0.48 nm Our results Transistor with La2O3 gate insulator

EOT=0.37nm La2O3

0.48 \rightarrow 0.37nm Increase of Id at 30%

μ_{eff} of W/La_2O_3 and W/HfO_2 nFET on EOT

W/La₂O₃ exhibits higher μ_{eff} than W/HfO₂
μ_{eff} start degrades below EOT=1.4nm

Gate Metal Induced Defects Compensation

63

Mobility Improvement with Mg Incorporation

Recovery of μ_{eff} mainly at low E_{eff}

Interface and bulk properties of reactively formed La-silicate

Direct contact of high-k/Si by silicate formation

Direct contact can be achieved with La_2O_3 by forming silicate at interface Control of oxygen partial pressusre is the key for processing

Issues in La-silicate/Si gate stack

(1) Interface property improvement by optimized annealing

(2) Reduction of oxygen defects by oxygen partial pressure control

Interface properties of La-silicate/Si

A fairly nice La-silicate/Si interface can be obtained with high temperature annealing. (800°C)

Interface properties of La-silicate/Si (cont.)

A low D_{it} of 1.6x10¹¹ cm⁻²/eV, results in better electron mobility.

Defect recovery by additional oxygen annealing

Additional oxygen atom supply recovers the oxygen defects

Complete recovery of defects with La-silicate, owing to strong bonding of covalent nature in silicate

Mobility improvement by optimized interface & defect recovery process

Large improvement in mobility was confimed by combining the two processes

Oxygen partial pressure control by gate material selection
Si & TiN capping as oxygen barrier layer

Si/TiN capping effect on CV characteristics

Si/TiN capping suppresses the EOT growth suppress the excess silicate reaction

SS of 64 mV/dec. can be obtained

EOT scaling with Si/TiN capped metal gate

A small EOT of 0.71nm with fairly nice mobility can be obtained

Impact of nitrogen incorporation into La-silicate

Fabrication procedure with nitridation

Interface properties of La-silicate with nitrogen

Nitrogen incorporation do not degrade the interface properties

Improved mobility by La-silicate with nitrogen

Nitrogen incorporation improves the mobility, especially at low field

Mobility benchmarking of La-silicate (with N)

La-silicate with nitrogen shows promissing performance for EOT towrads 0.5 nm

Question:

How far we can go with downscaling?

How far can we go?

Future

 \rightarrow (28nm) \rightarrow 22nm \rightarrow 16nm \rightarrow 11.5 nm \rightarrow 8nm \rightarrow 5.5nm? \rightarrow 4nm? \rightarrow 2.9 nm?

• At least 4,5 generations to 8nm

Hopefully 8 generations

Source: 2007 ITRS Winter Public Conf.

Scaling Method: by R. Dennard in 1974

Scaling of high beyond 0.5 nm is important

Power of FET =
$$CV^2/2$$
 D³ (=L³)

Down scaling is the most effective way of Power saving.

It has been always discussed about the limit of downscaling, but the down scaling of MOSFETs is still possible for another 10 or 20 years!

3 important technological items for DS.

1. Thinning of high-k beyond 0.5 nm

2. Metal S/D

3. Si-Nanowire FET

Nanowire FET

Nanowire structures in a wide meaning

Nanowire FET

Increase the Number of quantum channels

Maximum number of wires per 1 µm

Surrounded gate MQS

Device fabrication

3D-stacked Si NWs with Hi-k/MG

Top view

Wire direction : <110> 50 NWs in parallel 3 levels vertically-stacked Total array of 150 wires EOT ~2.6 nm **NWs**

Cross-section

SiNW Band structure calculation

Cross section of Si NW

First principal calculation,

D=1.96nm D=1.94nm D=1.93nm [001] [011] [111]

Si nanowire FET with 1D Transport

Atomic models of a Si quantum dot and Si nanowires

RSDFT – suitable for parallel first-principles calculation -

✓ Real-Space Finite-Difference Higher-order finite difference pseudopotential method
 ✓ Sparse Matrix J. R. Chelikowsky et al., Phys. Rev. B, (1994)
 ✓ FFT free (FFT is inevitable in the conventional plane-wave code)

for parallel computation.

✓MPI (Message Passing Interface) library _{3D} grid is divided by several regions

Kohn-Sham eq. (finite-difference)

$$\int \psi_{m}(\mathbf{r})\psi_{n}(\mathbf{r})d\mathbf{r} \approx \sum_{i=1}^{6} \psi_{m}(\mathbf{r}_{i})\psi_{n}(\mathbf{r}_{i}) \Delta x \Delta y \Delta z$$

Massively Parallel Computing

Iwata et al, J. Comp. Phys., to be published

Real-Space Density-Functional Theory code (RSDFT)

Based on the finite-difference pseudopotential method (J. R. Chelikowsky et al., PRB1994)

Highly tuned for massively parallel computers

Computations are done on a massively-parallel cluster **PACS-CS** at University of Tsukuba.

(Theoretical Peak Performance = 5.6GFLOPS/node)

SiNW Band compact model

Landauer Formalism for Ballistic FET

IV Characteristics of Ballistic SiNW FET

Small temperature dependency 35µA/wire for 4 quantum channels

Model of Carrier Scattering

Linear Potential Approx. : Electric Field E

Résumé of the Compact Model

$$I = \frac{q}{\pi \hbar} \sum_{i} g_{i} \int \left[f(\varepsilon, \mu_{s}) - f(\varepsilon, \mu_{D}) \right] T_{i} d\varepsilon \qquad C_{G} = \frac{2\pi\varepsilon_{ox}}{\ln\left\{\frac{\sqrt{2r + t_{ox}} + \sqrt{t_{ox}}}{\sqrt{2r + t_{ox}} - \sqrt{t_{ox}}}\right\}}.$$
Planar Gate

$$(V_{G} - V_{i}) - \alpha \frac{\mu_{S} - \mu_{0}}{q} = \frac{|Q_{f} + Q_{b}|}{C_{G}}. \qquad \mu_{S} - \mu_{D} = qV_{D} \qquad C_{G} = \frac{2\pi\varepsilon_{ox}}{\ln\left(\frac{r + t_{ox}}{r}\right)}.$$
(Electrostatics requirement)

$$Q_{f} + Q_{b} = \frac{q}{\pi} \sum_{i} g_{i} \left[\int_{-\infty}^{\infty} \frac{dk}{1 + \exp\left\{\frac{\varepsilon_{i}(k) - \mu_{S}}{k_{B}T}\right\}} - \int_{-\infty}^{0} \left\{ \frac{1}{1 + \exp\left\{\frac{\varepsilon_{i}(k) - \mu_{S}}{k_{B}T}\right\}} - \frac{1}{1 + \exp\left\{\frac{\varepsilon_{i}(k) - \mu_{D}}{k_{B}T}\right\}} \right\}} T_{i}(\varepsilon_{i}(k))dk$$
(Carrier distribution)

$$T(\varepsilon) = \frac{\sqrt{2D_0 qE}}{\left(\sqrt{B_0 + D_0} + \sqrt{D_0}\right) qE + \sqrt{2mD_0} B_0 \ln\left(\frac{qEx_0 + \varepsilon}{\varepsilon}\right)}$$

in Subbands)

Unknowns are I_D , $(\mu_S - \mu_0)$, $(\mu_D - \mu_0)$, $(Q_f + Q_b)$

I-V_D Characteritics (**RT**)

SiNW FET Fabrication

SiNW FET Fabrication

S/D & Fin Patterning

Sacrificial Oxidation

Oixde etch back

Backend

SiN sidewall support formation

Gate Oxidation & Poly-Si Deposition

Gate Lithography & RIE Etching

Gate Sidewall Formation

Ni SALISIDE Process (Ni 9nm / TiN 10nm)

(a) SEM image of Si NW FET (Lg = 200nm)(b) high magnification observation of gate and its sidewall.

Recent results to be presented by ESSDERC 2010 next week in Sevile

Wire cross-section: 20 nm X 10 nm

Bench Mark

Bench Mark

	This work	Ref[11]	Ref[12]	Ref[13]	Ref[14]	Ref[15]	Ref[4]
NW Cross-section (nm)	Rect.	Rect.	Rect.	Cir.	Cir.	Elliptical	Elliptical
NW Size (nm)	10x20	10x20	14	10	10	12	13x20
Lg (nm)	65	25	100	30	8	65	35
EOT or Tox (nm)	3	1.8	1.8	2	4	3	1.5
Vdd (V)	1.0	1.1	1.2	1.0	1.2	1.2	1.0
Ion(uA) per wire	60.1	102	30.3	26.4	37.4	48.4	43.8
Ion(uA/um) by dia.	3117	5010	2170	2640	3740	4030	2592
Ion(uA/um) by cir.	1609	2054	430	841	1191	1283	825
SS (mV/dec.)	70	79	68	71	75	~75	85
DIBL (mV/V)	62	56	15	13	22	40-82	65
Ion/Ioff	~1E6	>1E6	>1E5	~1E6	>1E7	>1E7	~2E5

Ref[11] by Stmicro Lg=25nm,Tox=1.8nm This work Lg=65nm,Tox=3nm

I_{ON}/I_{OFF} Bench mark

S. Kamiyama, IEDM 2009, p. 431 P. Packan, IEDM 2009, p.659

1.2 ~ 1.3V

Y. Jiang, VLSI 2008, p.34
H.-S. Wong, VLSI 2009, p.92
S. Bangsaruntip, IEDM 2009, p.297
C. Dupre, IEDM 2008, p. 749
S.D.Suk, IEDM 2005, p.735
G.Bidel, VLSI 2009, p.240

Primitive estimation !

Transistor Innovations Enable Technology Cadence

22 nm 3-D Tri-Gate Transistor

Energy-Efficient Performance Built on Moore's Law

22nm Silicon Technology Breakthrough Benefits Broad Range of Intel Architecture Devices

New 22nm 3-D transistors deliver unprecedented performance improvement and power reduction for Intel's product portfolio

- This benefits smallest handhelds to powerful cloud-based servers
- 37% performance increase at low voltage vs. 32nm planar transistors*
- Consumes only half the power at the same performance level as 2-D transistors on 32nm planar chips*

Current Issues <u>Si Nanowire</u>

Control of wire surface property Source Drain contact Optimization of wire diameter Compact I-V model **III-V & Ge Nanowire** High-k gate insulator Wire formation technique CNT: Growth and integration of CNT Width and Chirality control Chirality determines conduction types: metal or semiconductor **Graphene:**

Graphene formation technique Suppression of off-current

Very small bandgap or no bandgap (semi-metal)

Control of ribbon edge structure which affects bandgap 123

Thank you for your attention!