Nanoelectronic Device Technology -- Future perspective for the mainstream CMOS technology --

July 15, 2010

Frontier Research Center Tokyo Institute of Technology, Yokohama, Japan Hiroshi Iwai

1. Back ground

Japanese government announced 25% reduction of greenhouse gas in 2020 compared with 1990

Rapid growth of energy consumed by IT \rightarrow Reaching 10 % of Total Energy of our human society

Innovation in Integrated circuits technology will contribute to the cool earth significantly.

Cool Earth by IT or integrated circuits

Green by IT

1.By controlling the system by microprocessor (Integrated Circuits) more efficiently, energy consumption of the system will be significantly reduced.

Every human system : transportation system, manufacturing, Office

Green of IT

2.Power saving of Integrated Circuits in IT network (Server, Data Center, Router)

First Computer Eniac: made of huge number of vacuum tubes 1946 Big size, huge power, short life time filament

 \rightarrow dreamed of replacing vacuum tube with solid-state device

Today's pocket PC made of semiconductor has much higher performance with extremely low power consumption

Downsizing of the components has been the driving force for circuit evolution

1900	1950	1960	1970	2000
Vacuum Tube	Transistor	IC	LSI	ULSI
10 cm	cm	mm	10 µm	100 nm
10 ⁻¹ m	10 ⁻² m	10 ⁻³ m	10 ⁻⁵ m	10 ⁻⁷ m

In 100 years, the size reduced by one million times. There have been many devices from stone age. We have never experienced such a tremendous reduction of devices in human history.

Scaling Method: by R. Dennard in 1974

Geometry & Supply voltage	L _g , W _g T _{ox,} V _{dd}	К	Scaling K: K=0.7 for example
Drive current in saturation	I _d	К	$I_{d} = v_{sat}W_{g}C_{o}(V_{g}-V_{th}) \qquad C_{o}: gate C per unit area$ $\longrightarrow W_{g}(t_{ox}^{-1})(V_{g}-V_{th}) = W_{g}t_{ox}^{-1}(V_{g}-V_{th}) = KK^{-1}K = K$
l _d per unit W _g	l _d /μm	1	I_d per unit $W_g = I_d / W_g = 1$
Gate capacitance	C _g	К	$C_g = \varepsilon_o \varepsilon_{ox} L_g W_g / t_{ox} \longrightarrow KK / K = K$
Switching speed	τ	К	$\tau = C_g V_{dd} / I_d \longrightarrow KK / K = K$
Clock frequency	f	1/K	$f = 1/\tau = 1/K$
Chip area	A _{chip}	α	α : Scaling factor \rightarrow In the past, $\alpha > 1$ for most cases
Integration (# of Tr)	Ν	α/K²	N $\rightarrow \alpha/K^2 = 1/K^2$, when $\alpha = 1$
Power per chip	Р	α	fNCV ² /2 \rightarrow K ⁻¹ (α K ⁻²)K(K ¹) ² = α = 1, when α =1 ⁷ 7

1 - 0	$1 - 0.7^2 - 0.5$ and $1 - 1$
$k = 0.7$ and $\alpha = 1$	$K = 0.7^2 = 0.5 \text{ and } \alpha = 1$
Single MOFET	
$Vdd \rightarrow 0.7$	$Vdd \rightarrow 0.5$
Lg $\rightarrow 0.7$	Lg $\rightarrow 0.5$
$Id \rightarrow 0.7$	Id $\rightarrow 0.5$
$Cg \rightarrow 0.7$	$Cg \rightarrow 0.5$
P (Power)/Clock	P (Power)/Clock
$\rightarrow 0.7^3 = 0.34$	→ 0.5 ³ = 0.125
τ (Switching time) $\rightarrow 0.7$	τ (Switching time) \rightarrow 0.5
Chip	
N (# of Tr) \rightarrow 1/0.7 ² = 2	N (# of Tr) \rightarrow 1/0.5 ² = 4
f (Clock) \rightarrow 1/0.7 = 1.4	f (Clock) \rightarrow 1/0.5 = 2
P (Power) → 1	P (Power) → 1

Actual past downscaling trend until year 2000

Vd scaling insufficient, α increased

N, Id, f, P increased significantly

Many people wanted to say about the limit. Past predictions were not correct!!

Period	Expected limit(size)	Cause
Late 1970's	1µm:	SCE
Early 1980's	0.5µm:	S/D resistance
Early 1980's	0.25µm:	Direct-tunneling of gate SiO ₂
Late 1980's	0.1µm:	'0.1µm brick wall'(various)
2000	50nm:	'Red brick wall' (various)
2000	10nm:	Fundamental?

Historically, many predictions of the limit of downsizing.

VLSI text book written 1979 predict that 0.25 micrometer would be the limit because of directtunneling current through the very thin-gate oxide.

FAD

VLSI textbook

Finally, there appears to be a fundamental limit ¹⁰ of approximately quarter micron channel length, where certain physical effects such as the tunneling through the gate oxide begin to make the devices of smaller dimension unworkable.

Direct-tunneling effect

Drain current: Id \propto 1/Gate length (Lg)

Lg \rightarrow small, Then, Ig \rightarrow small, Id \rightarrow large, Thus, Ig/Id \rightarrow very small

15

5 nm gate length CMOS

ITRS expect Lg less than 10nm 2009 ITRS Technology Trend: MPU gate length

Figure 8b 2009 ITRS—MPU/high-performance ASIC Half Pitch and Gate Length Trends R S

CMOS scaling is the mainstream

How far can we go?

Future

 \rightarrow 32nm \rightarrow 22nm \rightarrow 16nm \rightarrow 11.5 nm \rightarrow 8nm \rightarrow 5.5nm? \rightarrow 4nm? \rightarrow 2.9 nm?

• At least 5,6 generations, for 15 ~ 20 years

Hopefully 8 generations, for 30 years

3 important items for *More* Moore

- 1. Scaling of high-k beyond 0.5 nm
- 2. Metal/Silicide S/D
- 3. Si-Nanowire FET

ITRS

EOT (Equivalent oxide thickness of gate insulator)

Scaling of high beyond 0.5 nm is important

Power of Transistor $= CV^2/2$ D³ (=L³) D:Size, L:Gate length

Direct contact technology of high-k to Si

Challenge for thinning High-k

Degradation of mobility

Challenge to EOT~0.3nm

EOT<0.5nm with Gain in Drive Current

14% of I_d increase is observed even at saturation region

EOT below 0.4nm is still useful for scaling

FinFET to Nanowire

Nanowire FET

Increase the Number of quantum channels

Increase the number of wires towards vertical dimension

Cross section of Si NW

First principal calculation, TAPP

D=1.96nm D=1.94nm D=1.93nm [001] [011] [111]

Si nanowire FET with 1D Transport

Landauer Formalism for Ballistic FET

Carrier Density obtained from E-k Band

IV Characteristics of Ballistic SiNW FET

Small temperature dependency 35µA/wire for 4 quantum channels

Model of Carrier Scattering

Linear Potential Approx. : Electric Field E

Résumé of the Compact Model

$$I = \frac{q}{\pi \hbar} \sum_{i} g_{i} \int [f(\varepsilon, \mu_{s}) - f(\varepsilon, \mu_{D})] T_{i} d\varepsilon \qquad C_{G} = \frac{2\pi\varepsilon_{ox}}{\ln\left\{\frac{\sqrt{2r + t_{ox}} + \sqrt{t_{ox}}}{\sqrt{2r + t_{ox}} - \sqrt{t_{ox}}}\right\}}.$$
Planar Gate

$$(V_{G} - V_{i}) - \alpha \frac{\mu_{S} - \mu_{0}}{q} = \frac{|Q_{f} + Q_{b}|}{C_{G}}. \qquad \mu_{S} - \mu_{D} = qV_{D} \qquad C_{G} = \frac{2\pi\varepsilon_{ox}}{\ln\left(\frac{r + t_{ox}}{r}\right)}.$$
GAA
(Electrostatics requirement)

$$Q_{f} + Q_{b}| = \frac{q}{\pi} \sum_{i} g_{i} \left[\int_{-\infty}^{\infty} \frac{dk}{1 + \exp\left\{\frac{\varepsilon_{i}(k) - \mu_{S}}{k_{B}T}\right\}} - \int_{-\infty}^{0} \left\{\frac{1}{1 + \exp\left\{\frac{\varepsilon_{i}(k) - \mu_{S}}{k_{B}T}\right\}} - \frac{1}{1 + \exp\left\{\frac{\varepsilon_{i}(k) - \mu_{D}}{k_{B}T}\right\}}\right\}} T_{i}(\varepsilon_{i}(k))dk$$

$$T(\varepsilon) = \frac{\sqrt{2D_{0}}qE}{\left(\sqrt{B_{0} + D_{0}} + \sqrt{D_{0}}\right)qE + \sqrt{2mD_{0}}B_{0}\ln\left(\frac{qEx_{0} + \varepsilon}{\varepsilon}\right)}$$
(Carrier distribution in Subbands)

Unknowns are I_{D} , (μ_{S} - μ_{0}), (μ_{D} - μ_{0}), および (Q_{f} + Q_{b})

I-V_D Characteritics (**RT**)

SiNW FET Fabrication

Brief process flow of Si Nanowire FET

- S/D&Fin Patterining (ArF Lithography and RIE Etching)
- Sacrificial Oxidation & Oxide Removal (not completely released from BOX layer)
- Nanowire Sidewall Formation (oxide support protector)
- Gate Oxidation (5nm) & Poly-Si Deposition (75nm)
- Gate Lithography & RIE Etching
- **Gate Sidewall Formation**
- Ni SALISIDE Process

(a) Fin structure formed on BOX layer. (b)XTEM image of fin shown in (a) (c) XTEM image after sacrificial oxidation (d) Cross sectional SEM image after partial removal of sacrificial oxide (e) XTEM after nanowire sidewall formation

SiNW FET Fabrication

S/D & Fin Patterning

Sacrificial Oxidation

Oixde etch back

Backend

SiN sidewall support formation

Gate Oxidation & Poly-Si Deposition

Gate Lithography & RIE Etching

Gate Sidewall Formation

Ni SALISIDE Process (Ni 9nm / TiN 10nm)

(a) SEM image of Si NW FET (Lg = 200nm)(b) high magnification observation of gate and its sidewall.

Fabricated SiNW FET

 I_{on}/I_{off} ratio of ~10⁷, high I_{on} of 49.6 μ A/wire

Output characteristics of 10x10nm² SiNW FET

L_g=65nm, T_{ox}=3nm

Current Issues <u>Si Nanowire</u>

Control of wire surface property Source Drain contact Optimization of wire diameter Compact I-V model **III-V & Ge Nanowire** High-k gate insulator Wire formation technique CNT: Growth and integration of CNT Width and Chirality control Chirality determines conduction types: metal or semiconductor **Graphene:**

Graphene formation technique Suppression of off-current

Very small bandgap or no bandgap (semi-metal)

Control of ribbon edge structure which affects bandgap 54

Conclusion

Si CMOS is still the most important mainstream technology for another 20~30 years, and we have to make effort to continue the scaling with by all means.

This will contribute significantly for the cool earth in short and long terms/

Acknowledgement People in TIT, Waseda Univ

Tsukuba Univ, U of Tokyo

Sponsor NEDO/METI

Thank you for your attention