Future nanoelectronic device technologies - high-k, nanowire and alternative channel

IEEE AP & ED Joint MQ @IIT Bombay

January 13, 2010

Tokyo Institute of Technology Frontier Research Center

Hiroshi Iwai

Last year is a great year for Electron/Opt Devices!

Three IEEE Fellows Win 2009 Nobel Prize in Physics

"...for breakthroughs involving the transmission of light in fiber optics and inventing an imaging semiconductor circuit, the three scientists created the technology behind digital photography and helped link the world through fiber optic networks."

(I-r) Dr. Charles K. Kao Dr. Willard S. Boyle Dr. George E. Smith

Nobel Prizes in Electron Devices

- 1956 The Transistor William Shockley, John Bardeen, and Walter Brattain
- 1973 Tunneling Diode Leo Esaki, Ivar Giaever
 - Josephson Junction
 Brian David Josephson
- 2000 Integrated Circuit Jack Kilby
 - Semiconductor Heterojunction Devices
 Zohres Alferov and Herbert Kroemer
- 2007 Giant Magnetoresistive Effect (GMR) Albert Fert and Peter Grunberg
- 2009 Charge Coupled Devices George Smith and Willard Boyle
 - Fiber Optic Technology Charles Kao

Global Internet 2009

The Father of Fiber Optic Communication

Sir Isaac Newton

"If I can see so far, it is because I stand on the shoulders of giants"

1. Scaling

Downsizing of the components has been the driving force for circuit evolution

1900	1950	1960	1970	2000
Vacuum Tube	Transistor	IC	LSI	ULSI
10 cm	cm	mm	10 µm	100 nm
10 ⁻¹ m	10 ⁻² m	10 ⁻³ m	10 ⁻⁵ m	10 ⁻⁷ m

In 100 years, the size reduced by one million times. There have been many devices from stone age. We have never experienced such a tremendous reduction of devices in human history. Downsizing

1. Reduce Capacitance

- → Reduce switching time of MOSFETs
- Increase clock frequency
 - Increase circuit operation speed
- 2. Increase number of Transistors
- → Parallel processing
 - Increase circuit operation speed

Downsizing contribute to the performance increase in double ways

Thus, downsizing of Si devices is the most important and critical issue:

Geometry & Supply voltage	L _g , W _g T _{ox,} V _{dd}	К	Scaling K: K=0.7 for example
Drive current in saturation	۱ _d	К	$I_{d} = v_{sat}W_{g}C_{o}(V_{g}-V_{th}) \qquad C_{o}: gate C per unit area$ $\longrightarrow W_{g}(t_{ox}^{-1})(V_{g}-V_{th}) = W_{g}t_{ox}^{-1}(V_{g}-V_{th}) = KK^{-1}K = K$
l _d per unit W _g	l _d /μm	1	I_d per unit $W_g = I_d / W_g = 1$
Gate capacitance	Cg	К	$C_g = \varepsilon_o \varepsilon_{ox} L_g W_g / t_{ox} \longrightarrow KK / K = K$
Switching speed	τ	К	$\tau = C_g V_{dd} / I_d \longrightarrow KK / K = K$
Clock frequency	f	1/K	$f = 1/\tau = 1/K$
Chip area	A _{chip}	α	α : Scaling factor \longrightarrow In the past, $\alpha > 1$ for most cases
Integration (# of Tr)	N	α/K^2	N $\rightarrow \alpha/K^2 = 1/K^2$, when $\alpha = 1$
Power per chip	Р	α	fNCV ² /2 \rightarrow K ⁻¹ (α K ⁻²)K(K ¹) ² = α = 1, when α =1

Scaling down approach is very beautiful and imprtant

2 Generations scaling	$k=0.7^2=0.5$ if we keep the chip area the same for sca				
Single MOFET					
	$Vdd \rightarrow 0.5$				
	Lg $\rightarrow 0.5$				
	Id $\rightarrow 0.5$				
	Cg \rightarrow 0.5 P (Power)/Clock \rightarrow 0.5 ³ = 0.125				
	τ (Switching time) $\rightarrow 0.5$				
Chip					
	N (# of Tr) \rightarrow 1/0.5 ² = 4				
	f (Clock) $\rightarrow 1/0.5 = 2$				
	$P(Power) \rightarrow 1$	14			

Actual past downscaling trend until year 2000

Vd scaling insufficient, α increased

N, Id, f, P increased significantly

Tera-scale Research Prototype

Connecting 80 simple cores on a single test chip

Intel processors with two cores are here now and quad-core processors are right around the corner. In the coming years, the number of cores on a chip will continue to grow, launching an era of vastly more powerful computers. These are the machines that will deliver efficient teraflop performance with the capabilities needed to handle tomorrow's emerging applications. They must also scale to an increasing number of cores – perhaps 10s or even 100s of them.

This test chip represents Intel's first tera-scale research prototype silicon. The purpose of the prototype is to develop a design methodology appropriate for tera-scale computing by using a tiled approach. Each tile includes a small core, or compute element, with a few simple instructions that can generate data, and a router that connects each tile to adjacent tiles and to 3D stacked memory that will be added in the future. The prototype consists of 80 tiles in an 8x10 array with an on-chip interconnect fabric.

The key technologies of this first Tera-scale Research Prototype are a mesh interconnect (left) and support for 3D stacked memory (above).

- The concerns for limits of down-scaling have been announced for every generation.
- However, down-scaling of CMOS is still the 'royal road'* for high performance and low power.
- Effort for the down-scaling has to be continued by all means.

- -There will be still 4~6 generations left until we reach 11 ~ 5.5 nm technologies, at which we will reach downscaling limit, in some year between 2020-30 (H. Iwai, IWJT2008).
- -Even After reaching the down-scaling limit, we could still continue R & D, seeking sufficiently higher Id-sat under low Vdd.
- -Three important technologies
 - 1. High-k/metal gate stack with <0.5nm EOT, Silcide S/D
 - 2. Si Nanowire MOSFETs
 - 3. Alternative channel MOSFETs (III-V, Ge), maybe nanowire
- Other Beyond CMOS devices are still in the cloud.

Before reaching the scaling limit, we need to pursuit the down scaling limit with conventional planar, or FINFET, introducing new materials such as (1) high-k/metal gate <0.5 nm EOT, and silicide S/D.

Then, (2) Si-nanowire FET

and then, (3) Alternative channel (III-V and Ge).

Si Nanowire FET

FinFET to Nanowire

by the courtesy of Professor H. Iwai

1D conduction per one quantum channel: $G = 2e^2/h = 77.8 \mu S/wire or tube$ regardless of gate length and channel material

That is 77.8 microA/wire at 1V supply

This an extremely high value

However, already 40-50 micro A/wire was obtained by our experiments

Increase the Number of quantum channels

Maximum number of wires per 1 µm

Surrounded gate MOS

Increase the number of wires towards vertical dimension

Theoretical model of SiNW FET

Landauer Formalism for Ballistic FET

Carrier Density obtained from E-k Band

Carrier Density obtained from Band Diagram

IV Characteristics of Ballistic SiNW FET

Small temperature dependency 35µA/wire for 4 quantum channels

Model of Carrier Scattering

Linear Potential Approx. : Electric Field E

Résumé of the Compact Model

$$I = \frac{q}{\pi \hbar} \sum_{i} g_{i} \int [f(\varepsilon, \mu_{s}) - f(\varepsilon, \mu_{D})] T_{i} d\varepsilon \qquad C_{G} = \frac{2\pi\varepsilon_{ox}}{\ln\left\{\frac{\sqrt{2r + t_{ox}} + \sqrt{t_{ox}}}{\sqrt{2r + t_{ox}} - \sqrt{t_{ox}}}\right\}}.$$
Planar Gate

$$(V_{G} - V_{i}) - \alpha \frac{\mu_{S} - \mu_{0}}{q} = \frac{|Q_{f} + Q_{b}|}{C_{G}}. \qquad \mu_{S} - \mu_{D} = qV_{D} \qquad C_{G} = \frac{2\pi\varepsilon_{ox}}{\ln\left(\frac{r + t_{ox}}{r}\right)}.$$
GAA
(Electrostatics requirement)

$$Q_{f} + Q_{b}| = \frac{q}{\pi} \sum_{i} g_{i} \left[\int_{-\infty}^{\infty} \frac{dk}{1 + \exp\left\{\frac{\varepsilon_{i}(k) - \mu_{S}}{k_{B}T}\right\}} - \int_{-\infty}^{0} \left\{\frac{1}{1 + \exp\left\{\frac{\varepsilon_{i}(k) - \mu_{S}}{k_{B}T}\right\}} - \frac{1}{1 + \exp\left\{\frac{\varepsilon_{i}(k) - \mu_{D}}{k_{B}T}\right\}}\right\}} T_{i}(\varepsilon_{i}(k))dk$$

$$T(\varepsilon) = \frac{\sqrt{2D_{0}}qE}{\left(\sqrt{B_{0} + D_{0}} + \sqrt{D_{0}}\right)qE + \sqrt{2mD_{0}}B_{0}\ln\left(\frac{qEx_{0} + \varepsilon}{\varepsilon}\right)}$$
(Carrier distribution in Subbands)

Unknowns are I_{D} , (μ_{S} - μ_{0}), (μ_{D} - μ_{0}), および (Q_{f} + Q_{b})

I-V_D Characteritics (**RT**)

Cross section of Si NW

First principal calculation, TAPP

D=1.96nm D=1.94nm D=1.93nm [001] [011] [111]
Si nanowire FET with 1D Transport

Effective mass

Lighter effective masses make conductance higher

Electron	[100]	[111] >	[110]	lighter
Hole	[100]	>> [110]	[111]	

Numbers of Quantum Channels

Quantum channels denote subband edges within 0.1 eV from CBM and VBM

Quantum channels increase in large wire

Quantum channel

Passage for transport

Collboration with Prof. Oshiyama and Iwata of Univ. of Tokyo

PACS-CS Theoretical Peak Performance : 14 TFLOPS CPU : LV Xeon 2.8GHz (× 1 CPU × 2560 nodes)

T2K-Tsukuba Theoretical Peak Performance : 95 TFLOPS CPU : Quad-core Opteron 2.3GHz (× 4 CPUs × 648 nodes)

10 nm diameter Si nanowired with 14,366-atom model

SiNW FET Fabrication

Brief process flow of Si Nanowire FET

- S/D&Fin Patterining (ArF Lithography and RIE Etching)
- Sacrificial Oxidation & Oxide Removal (not completely released from BOX layer)
- Nanowire Sidewall Formation (oxide support protector)
- Gate Oxidation (5nm) & Poly-Si Deposition (75nm)
- Gate Lithography & RIE Etching
- **Gate Sidewall Formation**
- **Ni SALISIDE Process**

(a) Fin structure formed on BOX layer. (b)XTEM image of fin shown in (a) (c) XTEM image after sacrificial oxidation (d) Cross sectional SEM image after partial removal of sacrificial oxide (e) XTEM after nanowire sidewall formation

SiNW FET Fabrication

S/D & Fin Patterning

Sacrificial Oxidation

Oixde etch back

Backend

SiN sidewall support formation

Gate Oxidation & Poly-Si Deposition

Gate Lithography & RIE Etching

Gate Sidewall Formation

Ni SALISIDE Process (Ni 9nm / TiN 10nm)

(a) SEM image of Si NW FET (Lg = 200nm)(b) high magnification observation of gate and its sidewall.

Fabricated SiNW FET

 I_{on}/I_{off} ratio of ~10⁷, high I_{on} of 49.6 μ A/wire

Effective mobility extraction

Comparison of Si NW FET being already reported with Si NW FETs in this work

??

Output characteristics of 10x10cm² SiNW FET

Obtained Ion with reported data

Even with large L_g , fairly nice I_{ON} have been achieved

Occupying area of Si bulk planar FET and Si NW FET. Drive current should be compared with the same width, W

On current evaluation base on gate width

Year	half-pitch (nm), P
2010	45
2014	28
2018	18
2022	11

(based on ITRS2008update)

Numbers of wires are determined by the lithographic technology

Performance of SiNW FET in ITRS

With device scaling in T_{ox} and L_g , SiNW FET can exceed the required performance in ITRS

Joint work with LETI

Relationship between mobility and high-*k interface properties* in advanced Si and SiGe nanowires

K. Tachi, M. Casse, D. Jang2, C. Dupré, A. Hubert, N. Vulliet, V. Maffini-Alvaro,

C. Vizioz1, C. Carabasse1, V. Delaye, J. M. Hartmann, G. Ghibaudo,

H. Iwai4, S. Cristoloveanu, O. Faynot, and T. Ernst1

Si Nanowire FET

- 1. Good I-off control
- 2. High I-on
- 3. Fully compatible to Si-LSI process

Most promising candidate for 16 or 11 nm CMOS and beyond

Many things to do for Si nanowire FETs

- No optimum diameter/orientation/, cross-section shape are known, both from theory and experiments
- 2. No compact model for I-V exists, with diameter, orientation, cross-section shape, gate length as a parameter.
- So many unknown things;
 Mobility, Oxidation, Strain, etc.

Scaling Limit in MOSFET

High-k Thin Film for Gate Insulator

Gate oxide scaling is very important also for suppressing the variation.

Assumption: Random dopant fluctuation is Main source of Random Variability: Line width roughness of Lg and Wg is not considered in this

Source: 2007 ITRS Winter Public Conf.

Historical trend of high-k R& D

Choice of High-k

		Candidates								Gas or liquid at 1000 K						HfO ₂ based dielectrics are selected as the		
H		Unstable at Si interface $M + SiO$						-	Radio active He					first generation materials, because of				
Li	Be	Si + MO_X MSi _X + SiO ₂ Si + MO_X MSi _X + SiO ₂							B	С	N	0	F	Ne	 their merit in 1) band-offset, 2) dielectric constant 3) thermal stability 			
Na	Mg	Si + MO _X M + MSi _X O _Y							Al	Si	Р	S	Cl	Ar				
K	Ca	Sc	Ti	V	Cr	Mn	Fc	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
<u>Rh</u>	Sr	Y	Zr Hf	Nb	Mo	Tc	Ru	Rb	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe	La ₂ O ₃ based dielectrics are thought to be the next generation materials, which may not need a thicker interfacial layer
<u>Cs</u> Fr	ва Ra		Rf	Ta Ha	W Sg	Ke Ns	Hs	Ir Mt	Pt	Au	Hg	11	Pb	BI	Po	At	Kn	

La Ce Pr Nd Pm SmEu Gd Tb Dy Ho Er TmYb Lu

Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

R. Hauser, IEDM Short Course, 1999 Hubbard and Schlom, J Mater Res 11 2757 (1996)⁶⁵

HfO2 was chosen for the 1st generation La2O3 is more difficult material to treat

Dielectric constant value vs. Band offset (Measured)

C.A. Billmann et al., MRS Spring Symp., 1999, R.D.Shannon, J. Appl. Phys., 73, 348, 1993 S. De Gebdt, IEDM Short Coyuse, 2004

T. Hattori, INFOS, 2003

Too large high-k cause significant short channel effect

Absorption of moisture and CO₂

The oxides become hydroxide and carbonate in H_2O and CO_2 ambient.

Hygroscopic Properties of La₂O₃

After 30 hours in clean room (temperature & humidity controlled)

Experimental apparatus

Change of CET for all studied

Absorption test in case of acryl apparatus after the AI electrode formation

Choice of High-k

	Candidates										Gas or liquid at 1000 K					d	HfO ₂ based dielectrics are selected as the			
H	Ur 	Unstable at Si interface										Radio active					first generation materials, because of			
Li	Be	$Si + MO_X MSi_X + SiO_2$ Si + MO _X MSi _X + SiO ₂									B	С	N	0	F	Ne	their merit in 1) band-offset, 2) dielectric constant			
Na ^I	Mg	Si	+ N	IO _X	Мн	⊦ MS	Si _x C) _Y			Al	Si	Р	S	Cl	Ar	3) thermal stability			
к	Ca S	c Ti	V	Cr	Mn]	Fc (Co I	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr				
Rh	Sr Y	Zr	Nb	Mo	Tc	Ru]	Rb 1	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe	La ₂ O ₃ based dielectrics are			
Cs	Ba	Hf	Ta	W	Re	Os	Ir l	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn	thought to be the next generation materials,			
Fr	Ra	Rf	Ha	Sg	Ns :	Hs 1	Mt										which may not need a thicker interfacial			
	L	a Ce	Pr	Nd	Pm	Sml	Eu (Gd '	Tb	Dy	Ho	Er	Tm	ıYb	Lu		layer			

Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

R. Hauser, IEDM Short Course, 1999 Hubbard and Schlom, J Mater Res 11 2757 (1996)⁷⁴

Mobility degradation causes for High-k MOSFETs (HfO₂, AI_2O_3 based oxide)

Remote scattering is dominant

S. Saito et al., IEDM 2003,

S. Saito et al., ECS Symp. on ULSI Process Integration

High-k gate insulator MOSFETs for Intel: EOT=1nm

EOT: Equivalent Oxide Thickness

Present Status of high-k Research

- IL of 0.5~0.7nm is essential for high μ
- Difficult to achieve EOT<0.7nm ?

77

[5] L. A. Rangersson, VLSI05

[6]C. H. Choi, IEDM02

[7]S. J. Rhee, VLSI05

High-k for Further Scaling

SiO₂ interfacial layer inserted or re-grown for

- recovery of degraded mobility
- interface state, reliability (TDDB, BTI), etc.
- SiO₂-IL free structure (direct contact of high-k/Si) is required for EOT=0.5nm

EOT scaling is expected down to 0.5 nm in ITRS

SiO_x-IL growth at HfO₂/Si Interface

Phase separator

HfO₂ + Si + O₂ HfO₂ + Si + 2O* HfO₂ + SiO₂ H. Shimizu, JJAP, 44, pp. 6131 Oxygen supplied from W gate electrode D.J.Lichtenwalner, Tans. ECS 11, 319 SiO_x-IL is formed after annealing Oxygen control is required for optimizing the reaction

La-Silicate Reaction at La₂O₃/Si Direct contact high-k/Si is possible

La₂O₃ can achieve direct contact of high-k/Si

81

Quantum Effect in Gate Stack

- A question if the performance improvement can be obtained with EOT<0.5nm
- Is EOT<0.5nm achievable?

EOT = 0.48 nm Our results Transistor with La2O3 gate insulator

Electrical Characterization of thin La₂O₃ MOSFET EOT<0.5nm

EOT<0.5nm with Gain in Drive Current

14% of I_d increase is observed even at saturation region

EOT below 0.4nm is still useful for scaling

Mobility concerns

Electrical characteristics of W/La₂O₃ nFET annealed at 500 °C Split-CV

EOT grows from 0.5 to 1.3nm

0.8

1

0.2

0

0.4

0.6

E_{eff}(MV/cm)

Schematic illustration of μ_{eff} reduction at small EOT

Spatial distribution of metal gate induced defects approaches to high-k/Si interface with small EOT

Some of the defects generates interfacial states

μ_{eff} of W/La_2O_3 and W/HfO_2 nFET on EOT

W/La₂O₃ exhibits higher μ_{eff} than W/HfO₂
μ_{eff} start degrades below EOT=1.4nm

Gate Metal Induced Defects Compensation

Mobility Improvement with Mg Incorporation

Recovery of μ_{eff} mainly at low E_{eff}

Material selection against EOT growth

metal selection
high-k selection

EOT growth of W/La₂O₃ 30min in F.G. on annealing temperature 1.4 XPS Si1s spectrum Excess La₂O₃(4nm) Intensity [a.u.] silicate **Bulk Si** reaction w/o annealing 1.2 PMA300°C PMA500°C EOT (nm) PMA700°C 1 La-silicate 0.8 .a-silicate reaction Normalized 0.6 0.4 100 200 300 400 500 0 1847 1845 1843 1841 1839 1837 $La_{2}O_{3} + Si + nO_{2}$ **Binding energy [eV]** La_2SiO_5 , $La_2Si_2O_7$, $La_{9.33}Si_6O_{26}$, $La_{10}(SiO_4)_6O_3$, etc.

Silicate reaction further proceeds with the annealing temperature 95

Suppression of Silicate Reaction

Oxygen control is the key technology in achieving small EOT with high temperature annealing 96

Cap effect of SrO

Selection of rare earth silicate for interface layer Find out the effect of SrO capping

SrO capping for achieving small EOT

SrO La₂O₃ Diffusi enhan RE-silicate

Diffusion of Sr to enhance the dielectric constant of RE-silicate

0.5nm EOT can be achieved with Ce-silicate capped with SrO which enhances the k-value

EDX Analysis of the Distribution of Sr

Sr is diffused into Ce-silicate and possibly down to Si interface

SrO effect on Current Density

A guideline for material selection: direct contact of high-k with Si structure

