High-k Gate Stack Technology Beyond 0.5 nm EOT

IUMRS-ICM 2010, Symp. K-31 @Qindao International Convention Center, Qindao, China

September 28, 2009

Tokyo Institute of Technology

Hiroshi Iwai

1.By controlling the system by microprocessor (Integrated Circuits) more efficiently, energy consumption of the system will be significantly reduced.

Every human system : transportation system, manufacturing, Office

2.Power saving of Integrated Circuits in IT network (Server, Data Center, Router)

Power of Transistor $= CV^2/2$

C: Capacitance of Tr D D: Size V: Supply Voltage

To reduce the power, D and V should be reduced!

Scaling: Every 3 years; D and V reduces with 0.7 times

k= 0.7 in 3 years	k= 0.7 ² =0.5 in 6 years
MOFET $Vdd \rightarrow 0.7$ $Lg \rightarrow 0.7$ $Id \rightarrow 0.7$ $Cg \rightarrow 0.7$	$MOFET$ $Vdd \rightarrow 0.5$ $Lg \rightarrow 0.5$ $Id \rightarrow 0.5$ $Cg \rightarrow 0.5$
P (Power)/Clock $\rightarrow 0.7^3 = 0.34$ τ (Switching time) $\rightarrow 0.7$	P (Power)/Clock $\rightarrow 0.5^3 = 0.125$ τ (Switching time) $\rightarrow 0.5$

Scaling Method: by R. Dennard in 1974

ITRS expect Lg less than 10nm

ITRS: International Technology Roadmap for Semiconductors 2009 ITRS Technology Trend: MPU gate length

2009 ITRS - Technology Trends 1000 2009 ITRS MPU/ASIC Metal 1 (M1) ½ Pitch (nm) [historical trailing at 2-yr cycle; extended to 2013: ******<u>*</u>* then 3-yr cycle] - Mpu physical gate length 2009 ITRS MPU Printed Gate Length (GLpr) (nm) 100 2009 ITRS MPU Physical Gate Length (nm) [begin (e-e1) stat 7 16nm 10 Near-Term Long-Terr 2010 2025 1995 2000 2005 2015 2020 Year of Production 2008 ITR 8: 2008-2024

However EOT stops at 0.5 nm in ITRS! EOT (Equivalent oxide thickness of gate insulator)

How far can we go?

Future

 \rightarrow 32nm \rightarrow 22nm \rightarrow 16nm \rightarrow 11.5 nm \rightarrow 8nm \rightarrow 5.5nm? \rightarrow 4nm? \rightarrow 2.9 nm?

• At least 5,6 generations, for 15 ~ 20 years

Hopefully 8 generations, for 30 years

k= 0.7 and α =1	k= 0.7 ² =0.5 and α =1						
Single MOFET							
$Vdd \rightarrow 0.7$	$Vdd \rightarrow 0.5$						
$Lg \rightarrow 0.7$	$Lg \rightarrow 0.5$						
$Id \rightarrow 0.7$	Id $\rightarrow 0.5$						
$Cg \rightarrow 0.7$	$Cg \rightarrow 0.5$						
P (Power)/Clock	P (Power)/Clock						
$\rightarrow 0.7^3 = 0.34$	$\rightarrow 0.5^3 = 0.125$						
τ (Switching time) $\rightarrow 0.7$	τ (Switching time) \rightarrow 0.5						
Chip							
N (# of Tr) \rightarrow 1/0.7 ² = 2	N (# of Tr) \rightarrow 1/0.5 ² = 4						
f (Clock) \rightarrow 1/0.7 = 1.4	f (Clock) \rightarrow 1/0.5 = 2						
P (Power) → 1	P (Power) → 1						

Without EOT scaling→ Huge Off leakage and Vth variation

Thus, EOT scaling beyond 0.5 nm is very important!

Choice of High-k

		Candidates											C a	Sas It 10	or li)00 l	iqui K	HfO ₂ based dielectrics are selected as the						
H		Unstable at Si interface $M + SiO$										Radio active He						first generation materials, because of					
Li	Be	Si + MO_X MSi _X + SiO ₂ Si + MO_X MSi _X + SiO ₂									B	С	N	0	F	Ne	their merit in 1) band-offset, 2) dielectric constant						
Na	Mg		SI	+ N	10 _x	M	+ M	SIX	O _Y			Al	Si	Р	S	Cl	Ar	3) thermal stability					
K	Ca	Sc	Ti	V	Cr	Mn	Fc	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr						
Rh	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rb	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe	La ₂ O ₃ based dielectrics are thought to be the next					
Cs	Ba		п	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn	generation materials,					
Fr	Ra		Rf	Ha	Sg	Ns	Hs	Mt										which may not need a thicker interfacial layer					

La Ce Pr Nd Pm SmEu Gd Tb Dy Ho Er TmYb Lu

Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

R. Hauser, IEDM Short Course, 1999 Hubbard and Schlom, J Mater Res 11 2757 (1996)¹²

High-k gate insulator MOSFETs for Intel: EOT=1nm

EOT: Equivalent Oxide Thickness

Direct contact technology of high-k to Si

HfO2 was chosen for the 1st generation La2O3 is more difficult material to treat

Dielectric constant value vs. Band offset (Measured)

C.A. Billmann et al., MRS Spring Symp., 1999, R.D.Shannon, J. Appl. Phys., 73, 348, 1993 S. De Gebdt, IEDM Short Coyuse, 2004

T. Hattori, INFOS, 2003

SiO_x-IL growth at HfO₂/Si Interface

Phase separator

HfO₂ + Si + O₂ HfO₂ + Si + 2O* HfO₂ + SiO₂ H. Shimizu, JJAP, 44, pp. 6131 Oxygen supplied from W gate electrode D.J.Lichtenwalner, Tans. ECS 11, 319 SiO_x-IL is formed after annealing Oxygen control is required for optimizing the reaction

La-Silicate Reaction at La₂O₃/Si Direct contact high-k/Si is possible

La₂O₃ can achieve direct contact of high-k/Si

19

EOT = 0.48 nm Our results Transistor with La2O3 gate insulator

Quantum Effect in Gate Stack

- A question if the performance improvement can be obtained with EOT<0.5nm
- Is EOT<0.5nm achievable?

EOT<0.5nm with Gain in Drive Current

14% of I_d increase is observed even at saturation region

EOT below 0.4nm is still useful for scaling

Mobility concerns

Mobility degradation causes for High-k MOSFETs (HfO₂, AI_2O_3 based oxide)

Remote scattering is dominant

S. Saito et al., IEDM 2003,

S. Saito et al., ECS Symp. on ULSI Process Integration

μ_{eff} of W/La_2O_3 and W/HfO_2 nFET on EOT

W/La₂O₃ exhibits higher μ_{eff} than W/HfO₂
 μ_{eff} start degrades below EOT=1.4nm

Electrical characteristics of W/La₂O₃ nFET annealed at 500 °C

However, EOT grows from 0.5 to 1.3nm!

Schematic illustration of μ_{eff} reduction at small EOT

Spatial distribution of metal gate induced defects approaches to high-k/Si interface with small EOT

Some of the defects generates interfacial states

Gate Metal Induced Defects Compensation

Mobility Improvement with Mg Incorporation

Recovery of μ_{eff} mainly at low E_{eff}

Cluster tool for high-k thin film deposition

Recent/Current Research Items in my group For High-k gate dielectrics

- (1) FET operation with EOT<0.5mn
- (2) High μ_{eff} with direct contact of La-silicate/Si
- (3) Origin of degradations at EOT<1.3nm
- (4) Modeling of defects in dielectrics
- (5) μ_{eff} recovery with Mg incorportation
- (6) Atomic structure of La-silicates
- (7) Small EOT with low leakage current
- (8) Interface dipole at high-k interface
- (9) Defect compensation with Ce-oxide capping

Direct contact of high-k/Si with La-silicate foramtion

EOT:Equivalent oxide thickness

Originality

Foramtion of high-k quality La-silicate using the reaction of La_2O_3 and Si substrate

High quality La-silicate

K. Kakushima, et al., ESSDERC '08, Edinburgh

(1) Overwhelming the EOT below 0.5 nm

 Question about device improvement below EOT=0.5nm (written in ITRS roadmap)

· Difficulty in fabrication process to achieve EOT<0.5nm

K. Kakushima, et al., Microelectron. Reliab., 50, 790 (2010)
(2) Direct high-k/Si using La-silicate/Si with high μ_{eff}

High peak μ_{eff} of 300cm²/Vs with 500°C annealing nice proerties of Si-rich La-silicate/Si interface

Fairly nice properties can be achieved even with direct high-k/Si interface (EOT~1.2)

(3) Origin of degradations at EOT<1.3nm

Coulomb scattering from high-k at EOT<1.3nm

K. Kakushima, et al., Solid-State Electron., 54, 715 (2010)

Defects from metal electrode

K. Kakushima, et al., Solid-State Electron., 54, 715 (2010)

(4) Modeling of defects in dielectrics

La-rich silicate formation with thin La_2O_3 layer one of the reasons for μ_{eff} degradation

K. Kakushima, et al., Solid-State Electron., 54, 720 (2010)

Thickness dependent silicate formation

thin layer of La_2O_3 makes thin La-rich silicate

K. Kakushima, et al., Solid-State Electron., 54, 720 (2010)

Modeling of the defect distribution in high-k

· Increase of D_{it} might be due to the diffusion of W atoms reaching to the high-k/Si interface and/or La-rich silicate formation

(5) μ_{eff} recovery with Mg incorportation

Incorprotation of Mg into La-silicate can recover the μ_{eff}

T. Koyanagi, K. Tachi, K. Okamoto, K. Kakushima, et al, Jpn. J. Appl. Phys., 48, 05DC02 (2009)

Alkali earth incorporation into La-silicate中

Compound	lonic conductivity (mS/cm) @500°C	
La _{9.33} Si ₆ O ₂₆	0.023 👖 High I	La conc.
La ₁₀ Si ₆ O ₂₇	4.3	
La ₁₀ Mg _{0.2} Si _{5.8} O _{26.8}	14	
La _{9.8} Mg _{0.3} Si _{5.7} O _{26.4}	12	

ref: H. Yoshioka et al., SSI 179, 2165 (2008)

Oxygen ion conductivity

high easy Vo formation, easy to recover

low difficult to form Vo, difficult to recover

High ionic conductivity with Mg incorporation

Compensation of defects from W electrode

T. Koyanagi, K. Okamoto, <u>K. Kakushima</u>, et al., ECS Trans., **25**, 17 (2009)

(6) Atomic structure of La-silicates

Purpose

Investigation of the atomic structure of Lasilicate

La-silicate for gate dielectric (<4nm)

Compositional gradient normal to the surface

Method

Angle-resolved XPS measurment

O 1s spectra of La-silicate on different TOA

Binding energy of Si-O-Si and La-O-Si differes on the TOA

Difference in the binding energy of La-O-Si and Si-O-Si should be constant

Lack of physics based interpretation

The influence of second neighbor atom should be accounted

La atom concentration dependent binding energy shift A common method for Na-dope glass

La atom distribution in La-silicate

Extraction of concentration dependent binding energy shift

Concentration dependent binding energy shift

BO: bridging oxygen atom NBO:non-bridging oxygen atom

Reconstruction of the obtained O 1s spectrum

K. Kakushima, et al., J. Appl. Phys., 104, 104908 (2009)

Summary of the deconvolusion

	Binding energy of	Take-off angle (degree)				
	O 1 <i>s</i> , eV (FWHM, eV)	15	20	30	52	80
Conventio nal fitting	NBO 1s	531.49 (1.57)	531.63 (1.57)	531.71 (1.48)	531.76 (1.57)	531.75 (1.53)
	BO 1s	533.10 (1.46)	533.18 (1.41)	533.28 (1.41)	533.26 (1.34)	533.27 (1.29)
	ΔE_{BO-NBO}	1.61	1.55	1.57	1.50	1.52
This work	NBO 1s at $r=0, E_{NBO}(0)$	531.42 (1.32)	531.60 (1.32)	531.64 (1.32)	531.72 (1.32)	531.70 (1.32)
	BO 1s at $r=0, E_{BO}(0)$	533.17 (1.53)	533.33 (1.53)	533.38 (1.53)	533.46 (1.53)	533.45 (1.60)
	$\Delta [E_{BO}(0) - E_{NBO}(0)]$	1.75	1.73	1.74	1.74	1.75

A constant binding energy difference between BO and NBO Physical meaning

Extraction of La concentration from a spectrum

La atom distribution can be detected from one O 1s spectrum

K. Kakushima, et al., J. Appl. Phys., 104, 104908 (2009)

Analysis of Si 1s spectra

Determination of oxygen sites after annealing

K. Kakushima, et al., J. Appl. Phys., 104, 104908 (2009)

Formation of Si-rich silicate

K. Kakushima, et al., J. Appl. Phys., 104, 104908 (2009)

(7) Small-EOT with small-leakage current

Formation of rare earth-rich silicate with nice interface properties

Excess silicate formation with La₂O₃

Annealing for short period before thermal equilibrium Suppression of the EOT increase

Issues in CeO_x

$4CeO_2 + Si + O_2$ $2Ce_2O_3 + SiO_2$

before annealing

after annealing at 500 °C

 CeO_2 within CeO_x forms SiO_2 as an interfacial layer

LaCe-silicate using La₂O₃ and CeO_x

 Intermixing of La, Ce and Si atoms with high temperature annealing

·Uniform LaCe-silicate with sharp interface

LaCe-silicate with different La concentration

k-value of 17.4 with $La_{1.5}Ce_{0.5}SiO_5$

K. Kakushima.et al., VLSI symp. tech. 7.1 (2010)

Gate leakage current with LaCe-silicate

$J_{g}=0.65 \text{A/cm}^{2} \text{ at EOT}=0.64 \text{nm}$

(世界最小レベル)

K. Kakushima.et al., VLSI symp. tech. 7.1 (2010)

(8) Interface dipole at high-k interface

Incorporation of La atoms: Negative flatband shift for HfO₂ gate dielectrics

Reported mechanism

1. La capping on HfO₂

X. Wang, VLSI symp. tech. 2006

2. La concentration in $HfLaO_x$

Y. Yamamoto, SSDM 2006

The amount of La atoms at HfO_2/SiO_2 determines the Vfb An interface dipole at high-k/SiO₂

Binding energy shift of the substrate with the amount of La₂O₃ insertion

Direct observation of the band bending of the substrate
The amount of La atoms at High-k/SiO₂ determines the V_{FB}

K. Kakushima, et al., Appl. Surf. Sci., 254, 6106 (2008)

Dipole extraction from HfO₂/SiO₂/Si and La₂O₃/SiO₂/Si

 $(\Delta W/HfO_2 + \Delta HfO_2/SiO_2) - (\Delta W/La_2O_3 + \Delta La_2O_3/SiO_2) = 0.36 V$

 $\square \land HfO_2/SiO_2 - \Delta La_2O_3/SiO_2 = 0.36 V$ No difference at metal interface High-k/SiO_2 is the reason for V_{FB} shift

Modeling of the interface dipole

 μ : dipole moment

(electronegativity) × (bonding length)

 $\mu_{all} = 2/3 \mu_{La-O} - 2/4 \mu_{Si-O} + \Delta \mu$

Valence number O and Si of O and Si

Second neighbor of O and SiO molecule

electronegativity O: 3.44 Si: 1.90 La: 1.10

7777

La₂O₃/IL/Si

.a

. μ_{La-O}

 $\mu_{\text{Si-O}}$

 $-\mu_{Si-O}$

 $-\mu_{Si-O}+\Delta\mu$

cancel out

 $=\frac{2}{3} \times 0.604 - \frac{2}{4} \times 0.246 + 0.141$ =0.169 (nm)

Definition of dipole moment for electron transfer

 $V_{FB} = \eta \mu_{all} + \phi_{ms} \phi_{ms} = 0.4 \text{ eV}$

 $\eta = -1.87$ using experimentally deduced 0.36V

Estimation of V_{FB}for direct high-k/Si

(b) La_2O_3/Si (c) HfO_2/Si

i	i
La "	Hf "
μ_{La-O}	μ_{Hf-O}
Ŏ	Ŏ
$-\mu_{Si-O}$	$-\mu_{Si-O}$
7777 Si 7777	7777 Si 7777

$$V_{FB} = \eta \mu_{all} + \phi_{ms}$$
$$\eta = -1.87 \quad \phi_{ms} = 0.4 \text{ eV}$$

actimation

			estimation
	calculation	μ_{all}	V _{FB} (V)
(b) La ₂ O ₃ /Si	$2/3\mu_{La-O}$ - $1/2\mu_{Si-O}$	0.279	-0.12
(c) HfO ₂ /Si	$1/2\mu_{Hf-O}$ - $1/2\mu_{Si-O}$	0.087	0.24

Proposed model can predicts the V_{FB} even with direct contact of high-k/Si

K. Kakushima, et al., Solid-State Electron., 52, 1280 (2008)

V_{FB} estimation on wide materials

Measured and modeled $V_{\mbox{\scriptsize FB}}$

Oxide	Measured V _{fb} (V)	Modeled V _{fb} (V)	EOT (nm)
SiO ₂	0.38	0.40	5.46
La ₂ O ₃	-0.13	-0.12	1.15
HfO ₂	0.34	0.24	0.90
Sc ₂ O ₃	0.18	0.09	1.40
Ce ₂ O ₃	-0.04	-0.07	1.11

A fairly nice mode to predict the $V_{\rm FB}$

Interface dipole measurement with XPS

Fermi level of metal and Si are fixed to the ground potential No influence of Dit

An example of Si 1s XPS spectra on different doping

K. Kakushima, et al., J. Appl. Phys., 104, 104908 (2008)

Quantitative estimation of interface dipole

Band diagram of La₂O₃/La-silicate/Si

Dipole extracted from capacitors: -0.52 eV

Good agreement with electrical measurements

(9) Defect compensation with CeO_x capping

Control of the defect concentration with capping recovery of μ_{eff} and V_{FB} shift

Theoretical study of the defects in La₂O₃

M. Kouda, N. Umezawa, K. Kakushima, et al., VLSI symp. tech., 200 (2009)

Fixation of the chemical potential with CeO_x

M. Kouda, N. Umezawa, <u>K. Kakushima</u>, et al., VLSI symp. tech., 200 (2009)

Suppression of fixed charge with CeO_x capping

Fixed charge density reduction by 66%

M. Kouda, N. Umezawa, <u>K. Kakushima</u>, et al., VLSI symp. tech., 200 (2009)

μ_{eff} and D_{it} improvement with CeO_x capping

M. Kouda, K. Tachi, <u>K. Kakushima</u>, et al., ECS Trans., **16**, 153 (2008)