Future of NanoCMOS after Scaling Limit

September 8, 2008
@Auditorio Marino Troncoso
Pontificia Universidad Javeriana,
Bogota, Columbia
Hiroshi Iwai,
Tokyo Institute of Technology

- There were many inventions in the $20^{\text {th }}$ century:
Airplane, Nuclear Power generation, Computer,
Space aircraft, etc
- However, everything has to be controlled by electronics
- Electronics

Most important invention in the $20^{\text {th }}$ century

- What is Electronics: To use electrons,

Electronic Circuits

Lee De Forest

Electronic Circuits started by the invention of vacuum tube (Triode) in 1906

Thermal electrons from cathode controlled by grid bias

Same mechanism as that of transistor

4 wives of Lee De Forest

1906 Lucille Sheardown 1907 Nora Blatch 1912 Mary Mayo, singer

1930 Marie Mosquini, silent film actress

First Computer Eniac: made of huge number of vacuum tubes 19 Big size, huge power, short life time filament
\rightarrow dreamed of replacing vacuum tube with solid-state device

History of Semiconductor devices

1947, $1^{\text {st }}$ Point Contact Bipolar Transistor:
Ge Semiconductor, Bardeen, Brattin \rightarrow Nobel Prize
1948, $1^{\text {st }}$ Junction Bipolar Transistor,
Ge Semiconductor, Schokley
\rightarrow Nobel Prize
1958, $1^{\text {st }}$ Integrated Circuits,
Ge Semiconductor, J.Kilby \rightarrow Nobel Prize
1959, $1^{\text {st }}$ Planar Integrated Circuits,
Noice

1960, $1^{\text {st }}$ MOS Transistor, Kahng, Si Semiconductor
1963, $1^{\text {st }}$ CMOS Circuits, C.T. Sah and F. Wanlass

History of Electronic Devices

J. E. LILIENFELD

DEVICES FOR CONIROUFDELECTRIC CURRENT

Filed March 28, 1928

J.E.LILIENFELD

Capacitor structure with notch

Electric field

0 bias for gate

Electron flow

Positive bias for gate

Surface Potential (Negative direction)

Source Channel Drain

Source Channel Drain

However, no one could realize
MOSFET operation for more than 30
Bears. between the semiconductor and gate insulator
Even Shockley!

Very bad interface property between the semiconductor and gate insulator

Interfacial
Charges

Electric Shielding

Drain Current was several orders of magnitude sm than expected

Even Shockley!

However, they found amplification phenomenon when investigating Ge surface when putting needles.
This is the $1^{\text {st }}$ Transistor:
Not Field Effect Transistor, But Bipolar Transistor (another mechanism)

1947: $1^{\text {st }}$ transistor

J. Bardeen W. Bratten,

W. Shockley

1958: 1st Integrated Circuit

Connect 2 bipolar transistors in the Same substrate by bonding wire.

1960: First MOSFET
 by D. Kahng and M. Atalla
 Top View

1970,71: 1st generation of LSIs

DRAM Intel 1103

MPU Intel 4004

MOS LSI experienced continuous progress for many years

Name of Integrated Circuits
Number of
Transistors
1960s IC (Integrated Circuits)
1970s LSI (Large Scale Integrated Circuit) ~1,0
1980s VLSI (Very Large Scale IC) ~10,0

1990s ULSI (Ultra Large Scale IC) ~1,000,C
2000s ?LSI (? Large Scale IC)
~1000,000

CMOS

Inverter

Complimentary MOS

When NMOS is ON, PMOS is OFF When PMOS is ON, NMOS is OFF

Inverter
Input O-Ot Out

Oscillator

Latch (Memory)

1
1

CMOS : Low Power: No DC current from Power supply to the ground

$$
V_{D}
$$

1 cycle

$$
P=\frac{1}{2} C V_{D}^{2}
$$

V_{D}

Clock frequency f

$$
P=\frac{1}{2} f C V_{D}{ }^{2}
$$

2 input NAND Circuit

Needless to say, but....
CMOS Technology:
Indispensible for our human society

Al the human activities are controlled by CMOS

living, production, financing, telecommunication, transportation, medical care, education, entertainment, etc.

Without CMOS:
There is no computer in banks, and
world economical activities immediately stop.
Cellarer phone dose not exists

Exponential Cost Reduction
 Cost per Transistor

Downsizing of the components has been the driving force for circuit

 evolution Vacu| 10 cm | cm | mm | $10 \mu \mathrm{~m}$ | 100 nm |
| :---: | :---: | :---: | :---: | :---: |
| $10^{-1} \mathrm{~m}$ | $10^{-2} \mathrm{~m}$ | $10^{-3} \mathrm{~m}$ | $10^{-5} \mathrm{~m}$ | $10^{-7} \mathrm{~m}$ |

In 100 years, the size reduced by one million times.
There have been many devices from stone age. We have never experienced such a tremendous reduction of devices in human history.

Downsizing

1. Reduce Capacitance
\rightarrow Reduce switching time of MOSFE Reduce power consumption
2. Increase number of Transistors

Increase functionality
\rightarrow Parallel processing
\rightarrow Increase circuit operation sp

Thus, downsizing of Si devices is the most important and critical issue.

Keep increase of the number of components.

Many people wanted to say about the limit. Past predictions were not correct!!

Period	Expected limit(size)	Cause
Late 1970's	$1 \mu \mathrm{~m}:$	SCE
Early 1980's	$0.5 \mu \mathrm{~m}:$	S/D resistance
Early 1980's	$0.25 \mu \mathrm{~m}:$	Direct-tunneling of gate SiC
Late 1980's	$0.1 \mu \mathrm{~m}:$	'0.1 1 m brick wall'(various)
2000	50nm:	'Red brick wall' (various)
2000	10nm:	Fundamental?

Historically, many predictions of the limit of

 dpusn ${ }^{2}$ ejengook written 1979 predict that 0.25 micro-meter would be the limit because of direct-tunneling current through the very thin-gate oxide.INTRODUCTION TO

CARVER MEAD - LYNN CONWAY

VLSI textbook

Finally, there appears to be a fundamental limit ${ }^{10}$ of approximately quarter micron channel length, where certain physical effects such as the tunneling through the gate oxide and fluctuations in the positions of impurities in the depletion layers begin to make the devices of smaller dimension unworkable.

Direct-tunneling effect

Potential Barrier

MOSFETs with 1.5 nm gate oxide

Gate leakage: $\lg \propto$ Gate Area \propto Gate length (Lg)
Drain current: \quad Id $\propto 1$ /Gate length (Lg)

Direct tunneling leakage current start to flow when

 the thickness is 3 nm .(Lg)

$\mathrm{Lg} \rightarrow$ small,
Then, Ig \rightarrow small, Id \rightarrow large, Thus, Ig/Id \rightarrow very small

Do not believe a text book statement, blindly! Never Give Up!

No one knows future!

There would be a solution!

Think, Think, and Think!
Or, Wait the time!
Some one will think for you

Transistor Scaling Continues

Downsizing limit?

Channel length?

5 nm gate length CMOS
 Is a Real Nano Device!!

Length of 18 Si atoms

SiN

H. Wakabayashi et.al, NEC

IEDM, 2003

Electron wave length 10 nm

Downsizing limit!

Channel length
Gate oxide thickness

Prediction now!

Electron wave length 10 nm

MOSFET operation

$$
\mathrm{Lg}=2 \sim 1.5 \mathrm{~nm} ?
$$

> Below this, no one knows future!

Maybe, practical limit around 5 nm .
When Gate length Smaller,
\rightarrow Subthrehold Leakage Current Larger

We have to reduce the Supply voltage.

Log Id

Then Vth should be lowered.

Prediction now!

Electron wave length 10 nm

Tunneling distance

3 nm

Practical limit for integration

 Lg = 5 nm ?MOSFET operation
Lg = 2 ~ 1.5 nm ?
Below this, no one knows future!

Ultimate limitation

ITRS Roadmap
(at introduction)

Lg: Gate length downsizing will continue to another 10-15 years
0.8 nm Gate Oxide Thickness MOSFETs operat 0.8 nm : Distance of 3 Si atoms!!

- 1.2 nm physical SiO 2 in production (90nm logic node)
- 0.8nm physical SiO 2 in research transistors

By Robert Chau, IWGI 200

So, we are now in the limitation of downsizing?

Do you believe this or do not?

There is a solution! K: Dielectric Constan To use high-k dielectrics

Thin gate SiO_{2}
Thick gate high-k dielectrics

Almost the same

 electric characteristics

Thick
Small leakage Current

However, very difficult and big challenge!
Remember MOSFET had not been realize। without $\mathrm{Si} / \mathrm{SiO}_{2}$!

Historical Trend of New Material for Gate Stack

Choice of High-k elements for oxide

Candidates
 \square

Unstable at Si interface
(1) $\mathrm{Si}+\mathrm{MO}_{\mathrm{X}} \mathrm{M}+\mathrm{SiO}_{2}$
(2) $\mathrm{Si}+\mathrm{MO}_{\mathrm{x}} \mathrm{MSi} \mathrm{M}_{\mathrm{X}}+\mathrm{SiO}_{2}$
(3) $\mathrm{Si}+\mathrm{MO}_{X} \mathrm{M}+\mathrm{MSi}_{X} \mathrm{O}_{Y}$

- Gas or liquid at 1000 KRadio active

HfO_{2} based dielectrics are selected as the first generation materials, because of their merit in

1) band-offset,
2) dielectric constant
3) thermal stability
$\mathrm{La}_{2} \mathrm{O}_{3}$ based dielectrics are thought to be the next generation materials, which may not need a thicker interfacial layer
\star La Ce Pr Nd PmSmEu GdTb Dy HoEr TmYbLu

R. Hauser, IEDM Short Course, 1999

Hubbard and Schlom, J Mater Res 112757 (1996)

Conduction band offset vs. Dielectric Constan

XPS measurement by Prof. T. Hattori, INFOS 2003

Intel's announcement, January 26, 2007, and IEDM Dec 2007
Hafnium-based high-k material by ALD: EOT= 1nm
Specific gate metals (Intel's trade secret)
Different Metals for NMOS and PMOS
Use of 193nm dry lithography
From 65 nm to 45 nm Tech.
Tr density: 2 times increase
Tr switching power: 30% reduction
Tr switching speed: 20\% improvement
S-D leakage power: 5 times reduction
Gate oxide leakage: 10 times reduction
45nm processors (Core ${ }^{\text {M }} 2$ family processors "Penryn") running Windows* Vista*, Linux* etc.

45 nm production in the second half of 2007

High-k gate insulator MOSFETs for Intel: EOT=1nm

EOT: Equivalent Oxide Thickness

History and future of Transistor Shrinking, Shrinking, and Shrinking! and then, Shrinking, Shrinking, and Shrinking!
$\mathrm{C}, \mathrm{V} \propto \mathrm{L} \quad \mathrm{C}$: Capacitance V: Voltage
Switching speed CV/I \rightarrow Decrease
Power consumption CV ${ }^{2} / 2 \rightarrow$ Decrease
Integration density: 1/L² \rightarrow Increase

Gate length $\quad 10,000 \mathrm{~nm} \quad 25 \mathrm{~nm}$
Gate Oxd Thickness 100 nm 1 nm

Choice of High-k elements for oxide

Candidates
 \square

Unstable at Si interface
(1) $\mathrm{Si}+\mathrm{MO}_{\mathrm{X}} \mathrm{M}+\mathrm{SiO}_{2}$
(2) $\mathrm{Si}+\mathrm{MO}_{\mathrm{x}} \mathrm{MSi} \mathrm{M}_{\mathrm{X}}+\mathrm{SiO}_{2}$
(3) $\mathrm{Si}+\mathrm{MO}_{X} \mathrm{M}+\mathrm{MSi}_{X} \mathrm{O}_{Y}$

- Gas or liquid at 1000 KRadio active

HfO_{2} based dielectrics are selected as the first generation materials, because of their merit in

1) band-offset,
2) dielectric constant
3) thermal stability
$\mathrm{La}_{2} \mathrm{O}_{3}$ based dielectrics are thought to be the next generation materials, which may not need a thicker interfacial layer

* LaCe Pr Nd PmSmEu GdTb Dy HoEr TmYbLu

R. Hauser, IEDM Short Course, 1999

Hubbard and Schlom, J Mater Res 112757 (1996)

Gate Leakage vs EOT, (Vg=[1|V)

$\mathrm{EOT}=0.48 \mathrm{~nm} \quad$ Our results

Transistor with La2O3 gate insulator

EOT $=0.37 \mathrm{~nm}$

$$
\mathrm{EOT}=0.37 \mathrm{~nm} \quad \mathrm{EOT}=0.40 \mathrm{~nm} \quad \mathrm{EOT}=0.48 \mathrm{~nm}
$$

$0.48 \rightarrow 0.37 \mathrm{~nm}$ Increase of Id at 30%

New material research will give us

 many future possibilities and the most importantfor Nanong Mopfigh-k!
New material for Metal gate electrode New material for High-k gate dielectric

New materials are important for Not only nano-CMOS logic MOSFETs, But also for new memories!

Limit of high-density memories, such as flash, DRAM will be solved by new materials.
Flash: floating gate \rightarrow gate insulator charge trap like SONOS, MNOS
DRAM \rightarrow New high-k insulator
New memory \rightarrow PRAM, RRAM

Flash

DRAM

PRAM, RRAM

Memory area will increase

Due to design productivity, yield, and power

ITRS' 2000: Y, Nishi, Si Nano Workshop, 2006

1970s: 10 years after single MOSFETs,

PMOS 1kbit DRAM
 Toshiba(1974)

NMOS 1k bit
SRAM Toshiba (1974)

64k DRAM 64k DRAM 1k SRAM
3 inch
wafer
4 inch wafer
2 inch wafer 1980
1974

In a future No person is necessary!

$6 \mu \mathrm{~m}$ NMOS LSI in 1974

Field SiO_{2}

New materials

Now: After 45 Years from the 1st single MOSFE

32 Gb and 16Gb NAND, SAMSUNG

Samsung's NAND flash trend
$\left.\begin{array}{llll}\begin{array}{lll}\text { Capacity } \\ \text { Production }\end{array} & \text { Node } & \text { st } & \\ \text { 5abrication }\end{array}\right]$

Even Tbit would be possible in future!

Already 32 Gbit:
larger than that of world population comparable for the numbers of neurons in human brain

Samsung announced 256 Gbit will be produced in 2010. Only 4 years from now. 256Gbit: larger than those of \# of stars in galaxies

Example: Immersion lithography, plasma doping, laser annealing etc.

PROCESS CONTROL: THE INVESTMENT THAT YIELDS
Ref:KLA Tencor

Sub-Wavelength Scaling

Source: Numerical Technologies

Light path in an EUV exposure tool

Short-channel effect at downsizing

Scaling Method: by R. Dennard

R. Dennard et al. , IEEE J. Solid State Circuits, vol.9. P.256, 1974

Downscaling merit

Geometry \& Supply voltage	$\left\lvert\, \begin{aligned} & \mathrm{L}_{\mathrm{g}}, \mathrm{~W}_{\mathrm{g}} \\ & \mathrm{~T}_{\mathrm{ox}}, \mathrm{~V}_{\mathrm{d}} \end{aligned}\right.$	K	Scaling K: K=0.7 for example
Drive current in saturation	I_{d}	K	$\begin{aligned} & I_{d}=v_{\text {sat }} W_{g} C_{o}\left(V_{g}-V_{\text {th }}\right) \quad C_{o} \text { : gate } C \text { per unit area } \\ & \rightarrow W_{g}\left(t_{\text {ox }}-1\right)\left(V_{g}-V_{\text {th }}\right)=W_{g} t_{\text {ox }}{ }^{-1}\left(V_{g}-V_{\text {th }}\right)=K K^{-1} K=K \end{aligned}$
I_{d} per unit W_{g}	$1 \mathrm{ld}^{\prime} / \mu \mathrm{m}$	1	I_{d} per unit $W_{g}=I_{d} / W_{g}=1$
Gate capacitance	C_{9}	K	$\mathrm{C}_{\mathrm{g}}=\varepsilon_{0} \varepsilon_{o x} \mathrm{~L}_{\mathrm{g}} \mathrm{W}_{\mathrm{g}} / \mathrm{t}_{\mathrm{ox}} \rightarrow \mathrm{KK} / \mathrm{K}=\mathrm{K}$
Switching speed	τ	K	$\tau=\mathrm{C}_{\mathrm{g}} \mathrm{V}_{\mathrm{d}} / \mathrm{I}_{\mathrm{d}} \rightarrow \mathrm{KK} / \mathrm{K}=\mathrm{K}$
Clock frequency	f	1/K	$\mathrm{f}=1 / \tau=1 / \mathrm{K}$
Chip area	$\mathrm{A}_{\text {chip }}$	α	Scaling α
Integration (\# of Tr)	N	α / K^{2}	$N \rightarrow \alpha / \mathrm{K}^{2} \quad 1 / \mathrm{K} 2$ when $\alpha=1$
Power per chip	P	α	$\mathrm{fNCV}^{2} / 2 \rightarrow \mathrm{~K}^{-1}\left(\alpha \mathrm{~K}^{-2}\right) \mathrm{K}\left(\mathrm{K}^{1}\right)^{2}=\alpha 1$ when $\alpha=1$

What will be real Downscaling?

Is K the same for all the parameters?

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{g}}, \mathrm{~W}_{\mathrm{g}}, \mathrm{t}_{\mathrm{ox}}, \mathrm{~V}_{\mathrm{d}} \rightarrow \mathrm{~K} ? \quad \mathrm{~A}_{\text {chip }} \rightarrow \alpha ? \\
& \mathrm{I}_{\mathrm{d}} \rightarrow \mathrm{~K} ? \quad \mathrm{I}_{\mathrm{d}} / \mu \mathrm{m} \rightarrow 1 ? \quad \mathrm{f} \rightarrow 1 / \mathrm{K} ? \\
& \mathrm{C}_{\mathrm{g}} \rightarrow \mathrm{~K} ? \quad \tau \rightarrow \mathrm{~K} ? \quad \mathrm{~N} \rightarrow \alpha / \mathrm{K}^{2} ? \quad \mathrm{P} \rightarrow \alpha ?
\end{aligned}
$$

Past downscaling trend

Past 30 years scaling
Merit: N, f increase
Demerit: P increase

V_{d} scaling insufficient
$\boldsymbol{\Omega}$
Additional significant
increase in
$\mathrm{I}_{\mathrm{d}}, \mathrm{f}, \mathrm{P}$

	Ideal scaling	Real Change		Ideal scaling	Real Change	Ideal scaling	Real Change
L_{g}	K	10^{-2}		K (10-2)	10^{-1}	1/K(10	0^{3}
$\mathrm{t}_{0 \times}$	$\mathrm{K}\left(10^{-2}\right)$	10^{-2}	$\mathrm{I}_{\mathrm{d}} / \mu \mathrm{m}$	1	10^{1}		
V_{d}	$\mathrm{K}\left(10^{-2}\right)$	10^{-1}				α (10	
$\mathrm{A}_{\text {chip }}$	α	10^{1}		$\alpha / K^{2}\left(10^{5}\right)$	10^{4}	$=\mathrm{f} \alpha \mathrm{NCV}^{2}$	

Microprocessors Trend expected in 2001

```
Past: }1972\mathrm{ (Intel) Today: }2002\mathrm{ (Intel) 2008 (Intel)
Lg \(10,000 \mathrm{~nm} \quad\) Lg sub- \(70 \mathrm{~nm} \quad\) Lg sub- 25 nm
Tox 1200 nm Tox 1.4 nm
f 0.00075 GHz f 2.53 GHz f 30GHz
P a few 100 mW P several 10 W P 10 kW
N 2.25k N 50 M N 1.8B
Heat Generation
    2002 10W/cm2 Hot Plate
    2006 100W/cm2 Surface of Nuclear Reactor
    2010 1000W/cm2 Rocket Nozzle
    2016 10000W/cm2 Sun Surface
P. P. Gelsinger, "Microprocessor for the New Millennium: Challenges,
Opportunities, and New Frontiers," Dig. Tech. }2001\mathrm{ ISSCC, San Francisco,
pp.22-23, February, 2001
```


Paul Packan, Intel Corporation, IEDM Short Course 2007

Problem is the huge production cost and investme

Amount of capital investment on Each of DRAM generation

Examples of foundry facility: UMC

Fab 12A (Tainan, Taiwan)
US $\$ 3$ billion investment
] Production since 2001

- 38K wafers/month by E/06
- $90,65 \mathrm{~nm}$ in production

Fab 12i (Singapore)

- US $\$ 3.6$ billion investment
- Production since 2004
- 25K wafers/month by E/06
- 130, 90 nm in production
\square Ready for 65 nm pilot

Volume production with lager wafer is a soluti

IC Fab Utility Usage : 12" vs. 8"

	$12 "-F a b$	$8 "-F a b$	$12 " / 8^{\prime}$ Usage ration	$12 " / 8^{\prime \prime}$ Wafer size ratio
Power	$1,100 \mathrm{KWH} /$ Wafer	$660 \mathrm{KWH} /$ Wafer	1.7	
Water	$6.1 \mathrm{M} 3 /$ Wafer	$4.7 \mathrm{M} 3 /$ Wafer	1.3	2.25
Waste Water	$3.8 \mathrm{M} 3 /$ /Wafer	$2.9 \mathrm{M} 3 /$ Wafer	1.3	
Waste Air	$20,000 \mathrm{CMH} /$ Wafer	$13,000 \mathrm{CMH} /$ Wafer	1.5	

TSMC

When do we start planning for next wafer size transition?

We are here

200mm/1990

$300 \mathrm{~mm} / 2001$
When does this happen?

$675 \mathrm{~mm} / 2021$

Crystal pulling furnace becomes too huge

Si crystal height cannot be very long because of its weigh

Furnace

- Height: 12 m
- Weight: 36 ton
- Hot zone: 40 inch
- Cusp-type super conductive magnet

Crystal

- Diameter: 400 mm
- Weight: over 400 kg
- Body length: over 1m

Provided by Super Silicon Crystal Research Institute Corp.(SSi)

How about the integration of such small-geometry MOSFETs in a chip?

1)Integration of huge number of the ultra-small MOSFETs would consume too huge power and thus, creates too huge heat?
2)Integration of such ultra-small MOSFETs causes too huge variations in the transistor characteristics, which could make the circuit design impossible?
3)There are too many number of transistors in a chip for the circuit designers to manipulate? (design crisis),
4)There would be no merit of transistor downsizing in performance and power, because of RC (resistance capacitance product) of interconnect cannot be reduced aggressively any more?
5)Who will pay the huge development and production costs for the integration of such ultra-small MOSFETs? Note that the prices for the recent process equipments and the lithography mask became extremely high.

These concerns have been argued in the past 15 years at every new generation of the products, like the wolf boy.

Fortunately, the wolf has not come, and the concerns have not come true.

It is expected that we can go with several more generations for the integration.

There will be still a room for squeezing the technologies to obtain the merit of the scaling-down for integration.

The continuous progress of CMOS technologies for
 - high-performance
 - Iow power
 is very important because of the 3 reasons:

1) Rapid progress of aging population and falling birth rate
2) Global warming
1)Semiconductor industry and world economy

1)Rapid progress of aging population and falling birth rate:

Replacement of some of the human jobs by intelligent machines - such as human type robot for elderly-care, for example.

For, the daily family use, much higher intelligence and much lower power consumption than those of today are required.

Robot in 21c cannot made without integrated circuits

Karakuri (Windup Mechanical) dd (18C) in Japan

2) Recent Significant Global Warming

We need reduce CO2 generation!

\rightarrow Low power technology is urgent request
Carbon Dioxide Variations

CO2 Emission per capita 2002

3) Semiconductor industry, and world economy

If there is no more downsizing such as $45 \rightarrow 32$ nm Logic, 8 Gbit $\rightarrow 16$ Gbit Memory

- LSIs will not be sold well, and semiconductor companies will face a disaster.
- Equipment and martial companies as well.
-There is no more R \& D for semiconductors and many people will loose their jobs.
\rightarrow World economy crisis!

History and future of Transistor

 Shrinking, Shrinking, and Shrinking! and then, Shrinking, Shrinking, and Shrinking$\mathrm{C}, \mathrm{V} \propto \quad \mathrm{C}:$ Capacitance/: Voltage
L Switching speed CV/I
\rightarrow Bocrease consumption CV²/2 \rightarrow Decrease Integration density: 1/L² \rightarrow Increase

	1970	2007
Gate length	$10,000 \mathrm{~nm}$	25 nm
Gate Oxd Thickness	100 nm	1 nm

CMOS downsizing is critically important

However now，many people expect that we will reach limit in 2020.

Totally，new paradigm after reaching
the downsizing limit．

1＾ルんのも．．．ill以への

After 2020

There is no decrease in gate length around at $10 \sim 5 \mathrm{~nm}$.

4 reasons.

After 2020

4 reasons for no downsizing anymore or No decrease in gate length

1. No increase of On-current (Drain current) because of already semi-ballistic conduction.
Ballistic \leftarrow No scattering of carriers in channel
Thus, all the carrier from the source reach drain
2. Increase of Off-current (Subthreshold current)
3. No decrease of Gate capacitance by parasitic components
4. Increase in production cost.

After 2020

What will be the world with no gate length reduction?

More Moore and More than Moore

Question what is the other side of the cloud?

Question: Will CMOS end in 2020?

|Three Stages in Silicon Nanoelectronics

1. CMOS Extension

3. Beyond CMOS

2. New Functions Added to CMOS
http://www.rens.hiroshima-u.ac.jp/21coe/pdf/5th_WS/2-4-2_Hiramoto.pdf

Diameter (d): ~0.5-5 nm, Length: $\sim 10 \mathrm{~nm}-10 \mathrm{~cm}$

CNT SB-MOSFET

CNT MOSFET

Charles M. Lieber, IEDM Short Course, 2008

The current density is normalized by $2 d$, where d is the nanotube diameter

CNTFETs outperform Si MOSFETs

Charles M. Lieber, IEDM Short Course, 2008

IBM's Carbon Nanotube IC

S.E Thompson, IEDM Short Course, 2008

The vision:

Graphene FET with top gate and local interconnects Top Gate

Graphene examples

Source: A. Geim

Graphene Field Effect Devices

- conductivity reduced by top gate oxide
- Model of Das Sarma:
- Minimum conductivity and shift of Dirac Point caused by interface charges
- without oxide: $\sim 2 \times 10^{12} \mathrm{~cm}^{-2}$
" with oxide: $\sim 6 \times 10^{12} \mathrm{~cm}^{-2}$
- Charges are suspected to cause scattering

Graphene Field Effect Devices

Mobility: a first approximation

Approximation of μ (Drude modell):
$\mu=\boldsymbol{\sigma} /\left(\mathrm{n}^{*} \mathrm{q}\right)$
with
$\sigma=\mathrm{J} / \mathrm{E}_{\mathrm{ds}}=\mathrm{I} /$ width * length $/ \mathrm{V}_{\mathrm{ds}}$
$\mathrm{n}=\boldsymbol{\varepsilon}^{*} \mathrm{E}_{\mathrm{eff}} / \mathrm{q}$

- Mobility decreases (> 1/10) for graphene "sandwiched" in SiO_{2} \rightarrow dominant scattering mechanism seems to be substrate determined
- Yet higher values than silicon universal mobility and especially higher than Ultra Thin Body SOI MOSFETs
Lemme et al., tbp: SSE

3D Chip Stacking LSI

Charles Lee, IEDM 2005 Short Course

Source: S. Maekawa, CAST2005

Victor V. Zhirnov and Ralph K. Cavin III, ECS 207
 Washington DC

Device	$\stackrel{\square}{\square}$?	-	」	$\stackrel{-\llbracket \mid}{\square}$.		$-\stackrel{+(4)}{7}$
	FET	RSFQ	1D structures	Resonant Tunneling Devices	SET	Molecular	QCA	Spin transistor
Cell Size	100 nm	$0.3 \mu \mathrm{~m}$	100 nm	100 nm	40 nm	Not known	60 nm	100 nm
Density $\left(\mathrm{cm}^{-2}\right)$	3E9	1E6	3E9	3E9	6E10	1E12	3E10	3E9
Switch Speed	$\begin{gathered} 700 \mathrm{GH} \\ \mathrm{z} \end{gathered}$	1.2 THz	Not known	1 THz	1 GHz	Not known	30 MHz	700 GHz
Circuit Speed	30 GHz	$\begin{gathered} 250- \\ 800 \mathrm{GHz} \end{gathered}$	30 GHz	30 GHz	1 GHz	$<1 \mathrm{MHz}$	1 MHz	30 GHz
Switching Energy,	2×10^{-18}	$>1.4 \times 10^{-17}$	2×10^{-18}	$>2 \times 10^{-18}$	$>1.5 \times 10^{-17}$	1.3×10^{-16}	$>1 \times 10^{-18}$	2×10^{-18}
Binary Throughput, GBit/ns/cm ${ }^{2}$	86	0.4	86	86	10	N/A	0.06	86

We HAVE IDENTIFIED NO VIABLE EMERGING LOGIC TECHNOLOGIES for Information Processing beyond CMOS

We could keep the Moore's law after 2020 Without downswing the gate length

What is Moore's law.

Keep increase of the number of components.

We could keep the Moore's law after 2020 Without downswing the gate length

What is Moore's law.
\rightarrow to increase the number (\#) of Tr. In a chip
Now, \# of Tr. in a chip is limited by power.
\rightarrow key issue is to reduce the power.
\rightarrow to reduce the supply voltage is still effective
To develop devices with sufficiently high drain current under low supply voltage is important.

FinFET to Nanowire

Channel conductance is well controlled by Gate even at $L=5 n m$

Selection of MOSFET structure for high conduction: Nano-wire or Nano-tube FETs is promising

3 methods to realize High-conduction at Low voltage M1 .Use 1D ballistic conduction

M2 .Increase number of quantum channel
M3 .Increase the number of wire or tube per area 3D integration of wire and tubes

For suppression of loff, the Nanowire/tube is also good.

1D conduction per one quantum channel:

$$
\begin{aligned}
& \mathrm{G}=2 \mathrm{e}^{2} / \mathrm{h}=77.8 \mu \mathrm{~S} / \text { wire or tube } \\
& \text { regardless of gate length and channel material }
\end{aligned}
$$

That is $77.8 \mathrm{~mA} /$ wire at 1 V supply
This an extremely high value

However, already 20mA/wire was obtained experimentaly by Samsung

Increase the Number of quantum channels

Energy band of 3×3 Si wire

Maximum number of wires per $1 \mu \mathrm{~m}$

Front gate type MOS 165 wires / $\mu \mathrm{m}$

Increase the number of wires towards vertical dimension

Our new roadmap

$2020 ?$

Thank you

for your attention!

