Past and future for micro- and nano-electronics, focusing on Si integrated circuits technology

June 2, 2008
@National Technical University of Athens

Hiroshi Iwai,
Toyo Institute of Technology

Needless to say, but....
CMOS Technology:
Indispensible for our human society

Al the human activities are controlled by CMOS

living, production, financing, telecommunication, transportation, medical care, education, entertainment, etc.

Without CMOS:
There is no computer in banks, and
world economical activities immediately stop.
Cellarer phone dose not exists

CMOS experienced continuous progress for many years

Name of Integrated Circuits
Number of
Transistors
1960s IC (Integrated Circuits)
1970s LSI (Large Scale Integrated Circuit) ~1,0
1980s VLSI (Very Large Scale IC) ~10,0

1990s ULSI (Ultra Large Scale IC) ~1,000,C
2000s ?LSI (? Large Scale IC)
~1000,000

Exponential Cost Reduction
 Cost per Transistor

Downsizing of the components has been the driving force for circuit

 evolution Vacu| 10 cm | cm | mm | $10 \mu \mathrm{~m}$ | 100 nm |
| :---: | :---: | :---: | :---: | :---: |
| $10^{-1} \mathrm{~m}$ | $10^{-2} \mathrm{~m}$ | $10^{-3} \mathrm{~m}$ | $10^{-5} \mathrm{~m}$ | $10^{-7} \mathrm{~m}$ |

In 100 years, the size reduced by one million times.
There have been many devices from stone age. We have never experienced such a tremendous reduction of devices in human history.

Downsizing

1. Reduce Capacitance
\rightarrow Reduce switching time of MOSFE Reduce power consumption
2. Increase number of Transistors

Increase functionality
\rightarrow Parallel processing
\rightarrow Increase circuit operation sp

Thus, downsizing of Si devices is the most important and critical issue.

First Computer Eniac: made of huge number of vacuum tubes 19، Big size, huge power, short life time filament

Many people wanted to say about the limit. Past predictions were not correct!!

Period	Expected limit(size)	Cause
Late 1970's	$1 \mu \mathrm{~m}:$	SCE
Early 1980's	$0.5 \mu \mathrm{~m}:$	S/D resistance
Early 1980's	$0.25 \mu \mathrm{~m}:$	Direct-tunneling of gate SiC
Late 1980's	$0.1 \mu \mathrm{~m}:$	'0.1 1 m brick wall'(various)
2000	50nm:	'Red brick wall' (various)
2000	10nm:	Fundamental?

Historically, many predictions of the limit of

 dpusn ${ }^{2}$ ejengook written 1979 predict that 0.25 micro-meter would be the limit because of direct-tunneling current through the very thin-gate oxide.INTRODUCTION TO

CARVER MEAD - LYNN CONWAY

VLSI textbook

Finally, there appears to be a fundamental limit ${ }^{10}$ of approximately quarter micron channel length, where certain physical effects such as the tunneling through the gate oxide and fluctuations in the positions of impurities in the depletion layers begin to make the devices of smaller dimension unworkable.

Direct-tunneling effect

Potential Barrier

MOSFETs with 1.5 nm gate oxide

Do not believe a text book statement, blindly! Never Give Up!

No one knows future!

There would be a solution!

Think, Think, and Think!
Or, Wait the time!
Some one will think for you

Transistor Scaling Continues

Downsizing limit?

Channel length?

5 nm gate length CMOS
 Is a Real Nano Device!!

Length of 18 Si atoms

SiN

H. Wakabayashi et.al, NEC

IEDM, 2003

Electron wave length 10 nm

Downsizing limit!

Channel length
Gate oxide thickness

Prediction now!

Electron wave length 10 nm

MOSFET operation

$$
\mathrm{Lg}=2 \sim 1.5 \mathrm{~nm} ?
$$

> Below this, no one knows future!

How about the integration of such small-geometry MOSFETs in a chip?

1)Integration of huge number of the ultra-small MOSFETs would consume too huge power and thus, creates too huge heat?
2)Integration of such ultra-small MOSFETs causes too huge variations in the transistor characteristics, which could make the circuit design impossible?
3)There are too many number of transistors in a chip for the circuit designers to manipulate? (design crisis),
4)There would be no merit of transistor downsizing in performance and power, because of RC (resistance capacitance product) of interconnect cannot be reduced aggressively any more?
5)Who will pay the huge development and production costs for the integration of such ultra-small MOSFETs? Note that the prices for the recent process equipments and the lithography mask became extremely high.

These concerns have been argued in the past 15 years at every new generation of the products, like the wolf boy.

Fortunately, the wolf has not come, and the concerns have not come true.

It is expected that we can go with several more generations for the integration.

There will be still a room for squeezing the technologies to obtain the merit of the scaling-down for integration.

The continuous progress of CMOS technologies for
 - high-performance
 - Iow power
 is very important because of the 3 reasons:

1) Rapid progress of aging population and falling birth rate
2) Global warming
1)Semiconductor industry and world economy

1)Rapid progress of aging population and falling birth rate:

Replacement of some of the human jobs by intelligent machines - such as human type robot for elderly-care, for example.

For, the daily family use, much higher intelligence and much lower power consumption than those of today are required.

Robot in 21c cannot made without integrated circuits

Karakuri (Windup Mechanical) dd (18C) in Japan

2) Recent Significant Global Warming

We need reduce CO2 generation!

\rightarrow Low power technology is urgent request
Carbon Dioxide Variations

CO2 Emission per capita 2002

3) Semiconductor industry, and world economy

If there is no more downsizing such as $45 \rightarrow 32$ nm Logic, 8 Gbit $\rightarrow 16$ Gbit Memory

- LSIs will not be sold well, and semiconductor companies will face a disaster.
- Equipment and martial companies as well.
-There is no more R \& D for semiconductors and many people will loose their jobs.
\rightarrow World economy crisis!

History and future of Transistor

 Shrinking, Shrinking, and Shrinking! and then, Shrinking, Shrinking, and Shrinking$\mathrm{C}, \mathrm{V} \propto \quad \mathrm{C}:$ Capacitance/: Voltage
L Switching speed CV/I
\rightarrow Bocrease consumption CV²/2 \rightarrow Decrease Integration density: 1/L² \rightarrow Increase

	1970	2007
Gate length	$10,000 \mathrm{~nm}$	25 nm
Gate Oxd Thickness	100 nm	1 nm

Choice of High-k elements for oxide

Candidates
 \square

Unstable at Si interface
(1) $\mathrm{Si}+\mathrm{MO}_{\mathrm{X}} \mathrm{M}+\mathrm{SiO}_{2}$
(2) $\mathrm{Si}+\mathrm{MO}_{\mathrm{x}} \mathrm{MSi} \mathrm{M}_{\mathrm{X}}+\mathrm{SiO}_{2}$
(3) $\mathrm{Si}+\mathrm{MO}_{X} \mathrm{M}+\mathrm{MSi}_{X} \mathrm{O}_{Y}$

- Gas or liquid at 1000 KRadio active

HfO_{2} based dielectrics are selected as the first generation materials, because of their merit in

1) band-offset,
2) dielectric constant
3) thermal stability
$\mathrm{La}_{2} \mathrm{O}_{3}$ based dielectrics are thought to be the next generation materials, which may not need a thicker interfacial layer
\star La Ce Pr Nd PmSmEu GdTb Dy HoEr TmYbLu

R. Hauser, IEDM Short Course, 1999

Hubbard and Schlom, J Mater Res 112757 (1996)

$\mathrm{EOT}=0.48 \mathrm{~nm} \quad$ Our results

Transistor with La2O3 gate insulator

CMOS downsizing is critically important

However now，many people expect that we will reach limit in 2020.

Totally，new paradigm after reaching
the downsizing limit．

1＾ルんのも．．．ill以への

After 2020

There is no decrease in gate length around at $10 \sim 5 \mathrm{~nm}$.

4 reasons.

After 2020

4 reasons for no downsizing anymore or No decrease in gate length

1. No increase of On-current (Drain current) because of already semi-ballistic conduction.
Ballistic \leftarrow No scattering of carriers in channel
Thus, all the carrier from the source reach drain
2. Increase of Off-current (Subthreshold current)
3. No decrease of Gate capacitance by parasitic components
4. Increase in production cost.

After 2020

What will be the world with no gate length reduction?

More Moore and More than Moore

Question what is the other side of the cloud?

Victor V. Zhirnov and Ralph K. Cavin III, ECS 207
 Washington DC

Device	$\stackrel{\square}{\square}$?	-	」	$\stackrel{-\llbracket \mid}{\square}$.		$-\stackrel{+(4)}{7}$
	FET	RSFQ	1D structures	Resonant Tunneling Devices	SET	Molecular	QCA	Spin transistor
Cell Size	100 nm	$0.3 \mu \mathrm{~m}$	100 nm	100 nm	40 nm	Not known	60 nm	100 nm
Density $\left(\mathrm{cm}^{-2}\right)$	3E9	1E6	3E9	3E9	6E10	1E12	3E10	3E9
Switch Speed	$\begin{gathered} 700 \mathrm{GH} \\ \mathrm{z} \end{gathered}$	1.2 THz	Not known	1 THz	1 GHz	Not known	30 MHz	700 GHz
Circuit Speed	30 GHz	$\begin{gathered} 250- \\ 800 \mathrm{GHz} \end{gathered}$	30 GHz	30 GHz	1 GHz	$<1 \mathrm{MHz}$	1 MHz	30 GHz
Switching Energy,	2×10^{-18}	$>1.4 \times 10^{-17}$	2×10^{-18}	$>2 \times 10^{-18}$	$>1.5 \times 10^{-17}$	1.3×10^{-16}	$>1 \times 10^{-18}$	2×10^{-18}
Binary Throughput, GBit/ns/cm ${ }^{2}$	86	0.4	86	86	10	N/A	0.06	86

We HAVE IDENTIFIED NO VIABLE EMERGING LOGIC TECHNOLOGIES for Information Processing beyond CMOS

We could keep the Moore's law after 2020 Without downswing the gate length

What is Moore's law.

Keep increase of the number of components.

We could keep the Moore's law after 2020 Without downswing the gate length

What is Moore's law.
\rightarrow to increase the number (\#) of Tr. In a chip
Now, \# of Tr. in a chip is limited by power.
\rightarrow key issue is to reduce the power.
\rightarrow to reduce the supply voltage is still effective
To develop devices with sufficiently high drain current under low supply voltage is important.

FinFET to Nanowire

Channel conductance is well controlled by Gate even at $L=5 n m$

Selection of MOSFET structure for high conduction: Nano-wire or Nano-tube FETs is promising

3 methods to realize High-conduction at Low voltage M1 .Use 1D ballistic conduction

M2 .Increase number of quantum channel
M3 .Increase the number of wire or tube per area 3D integration of wire and tubes

For suppression of loff, the Nanowire/tube is also good.

1D conduction per one quantum channel:

$$
\begin{aligned}
& \mathrm{G}=2 \mathrm{e}^{2} / \mathrm{h}=77.5 \mu \mathrm{~S} / \text { wire or tube } \\
& \text { regardless of gate length and channel material }
\end{aligned}
$$

That is $77.5 \mathrm{~mA} /$ wire at 1 V supply
This an extremely high value

However, already 20mA/wire was obtained experimentaly by Samsung

Increase the Number of quantum channels

Energy band of 3×3 Si wire

Maximum number of wires per $1 \mu \mathrm{~m}$

Front gate type MOS 165 wires / $\mu \mathrm{m}$

Increase the number of wires towards vertical dimension

Our new roadmap

$2020 ?$

Thank you

for your attention!

