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* Electronics is the

Most important invention in the 20" century
 Electronics: Electronic Circuits or IC
 Electronic Circuits in 100 years

Vacuum tube - ULSI
ast year was 100 year anniversary




Downsizing of the components has been
the driving force for circuit evolution

—
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In 100 years, the feature size reduced by one million

times.
We have never experienced such a tremendous

reduction in human history.



Downsizing

1. Reduce Capacitance

—» Reduce switching time of MOSFETSs
Reduce power consumption

2. Increase number of Transistors
Increase functionality

—»Parallel processing

—» |Ncrease circuit operation speed

Thus, downsizing of Si devices Is
the most important and critical issue. 4



Nano-CMOS:

What would be the
downsizing limit?



Many people wanted to say about the limit.
Past predictions were not correct!!

Period Expected  Cause
limit(size)

Late 1970°s  1um: SCE

Early 1980°s 0.5um: S/D resistance

Early 1980°s 0.25um:  Direct-tunneling of gate SiO,
Late 1980°s  0.1um: ‘0.1um brick wall’(various)

2000 50nm: “‘Red brick wall” (various)
2000 10nm: Fundamental?



Historically, many predictions of the limit of downsizing.

VLSI text book written 1979 predict that 0.25 micro-
meter would be the limit because of direct-
tunneling current through the very thin-gate oxide.
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Transistor Scaling Continues
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Downsizing limit?
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Electron — Downsizing limit!
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Prediction now!

Electron —
wave
length
10 nm
Tunneling
distance ......... >
3 nm |
- I\IjOSFE;'ope:{a;on ?
Atom g=<Z~1.o0onm:
distance o e 9 l
0.3 Nnm %9
' ®@ o ©o ‘But, no one knowsfuture!l2




Prediction now!

Electron —

Gate length
Prediction at present
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Size (um), Voltage(V)

Ultimate limitation

ITRS Roadmap
(at introduction)

10-4

105 L

However,Gate oxide thickness
2 orders magnitude smaller
Close to limitation!!

|10 nm Wave length of electron
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+10.3 nm Distance hetween Si atoms
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Lg: Gate length downsizing will continue to another 10-15 yeark4



0.8 nm Gate Oxide Thickness MOSFETSs operates!!

0.8 nm: Distance of 3 Si atoms!!

Silicon substrate

* 1.2nm physical SiO2 in production (90nm logic node)
* 0.8nm physical SiO2 in research transistors

By Robert Chau, IWGI 2008



There 1s a solution!
To use high-k dielectrics

Thin gate SiO, Thick gate high-k dielectrics

N —

Almost the same
electric characteristics

However, very difficult and big challenge!

Remember MOSFET had not been realized

without Si/SIO,! "



New material research will give us many
future possibilities and the most important
for Nano-CMOS!

Not only for high-k!

New material for Metal gate electrode
New material for High-k gate dielectric

New channel material \NEW material
r Metal S/D

17



New materials are important for
Not only nano-CMOS logic MOSFETS,
But also for new memories!

Limit of high-density memories, such as flash, DRAM
will be solved by new materials.

Flash: floating gate = gate insulator charge trap
like SONOS, MNOS
DRAM - New high-k insulator

New memory - PRAM, RRAM

Flash DRAM PRAM, RRAM

© © 6
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1970s: 10 years after single MOSFETS,

PMOS 1kbit NMOS 1k bit
DRAM SRAM Toshiba
Toshiba(1974) (1974)




Passivation (PSG)
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Just examples!
New materials Many other candidates
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Now: After 45 Years from the 1st single MOSFETSs

32 Gb and 16Gb NAND,
SAMSUNG
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Samsung’s NAND flash trend

Capacity Node  Announcement Product

512Mbit 120nm 2000 2001
1Gbit ~ 100nm 2001 2002
2Gbit ~ 90nm 2002 2003
AGbit  70nm 2003 2004
8Ghit  60nm 2004 2005
16Gbit  50nm 2005 2006
32Gbit  40nm 2006 20077
256Gbit  20nm 2010 20117

Even Thit is possible!



Already 32 Gbhit:
larger than that of world population
comparable for the numbers of neurons
In human brain

Samsung announced 256 Gbit will be produced in 2010.
Only 4 years from now.
256GDit: larger than those of # of stars in galaxies
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What will be the roadmap after 20207
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More Moore and More than Moore

Moore’s Law & More

More than Moore: Diversification >

Sensors . .

>

130nm Interacting _\mth people
and environment

90nm Non-digital content

System-in-package

65nm

Information

45nm Processing
Digital content
32nm System-on-chip

More Moore: Miniaturization

(SoC)
22nm

Baseline CMOS: CPU, Memory, Logic

<. -

Beyond CMOS

Question what Is the other ITRS 2005 Edition
side of the cloud?

http://strj-jeita.elisasp.net/pdf_ws_2005nendo/9A_WS2005IRC_Ishiuchi.pdf
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Question: Will CMOS end in 20207

rl'hree Stages in Silicon Nanoelectronics
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New Concept for Roadmap

Evolution of Extended CMOS Continues!!

Existing technologies

«SOWD papualxy —

New technologies

v
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Scaling Gets Tougher at Smaller Dimensions
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Intel continues to develop and implement new
materials and structures to meet the challenge




Size (Gate length efc

A

New Materials, New Process, New Structure Logic, Memory) I_’

Hybrid integration of different functional Chip
Increase of SOC functionality

.

3D integration of memory cell

3D integration of logic devices

Miniaturization of Interconnects on
(Printed Circuit Board)

Low cost for LSI process

Revolution for Equipment, Wafer

Introduction of algorithm
of bio-system
Brain of insects, human

Saturation of Downsizing
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After 2020

There Is no decrease in gate length around at 5 nm due to
subthreshold leakage.

It is not useful to reduce the gate length any more for
Increasing the drain current, because the conduction is
already semi-ballistic.

What is important for keeping Moore Law, then?

-> Increase drain current drive under low drain voltage
In order to reduce the power consumption.
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Selection of MOSFET structure
For suppression of loff, the structure will be Fin-FET type

High-conduction at low voltage
1D conduction - Nano-wire, Nano-tube FET
Increase number of guantum channel -
Band engineering CNT( Carbon Nano-tube Tnansistor)
Increase the number of wire or tube -
3D integration of wires and tubes

High-integration, low cost production,
no-small-geometry lithography - CNT

32
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Our new roadmap
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PJT(2007~2012) 30 Extended CMOS
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1D conduction per one quantum channel:
G = 2e?/h =80 uS/wire or tube
regardless of gate length and channel material

But this value has not been obtained yet,
due to reflection of carriers from drain, surface roughness

% %

i <€

T Optical Phonon
Potential JL
>
Abortion to drain
Source Channel - Drain
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Increase the number of wires

Si~ Strained SiGe.”Si
Depo. Temp. : 500°C

XTEM

(a) Si/SiGe/Si _
epitaxial wafer / (b) Dry Etching
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Si/SiGe multi Dry Etching Selective Etching H, Annealing
stacked wafer
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Lateral growth of CNT

<«— Nano dot catalyst
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Thank you
for your attention!
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