Master Thesis

Effects of Interface and Surface Properties on Silicon Nanowire Photovoltaics

A Dissertation Submitted to
the Department of Electronics and Applied Physics
Interdisciplinary Graduate School of Science and Engineering
Tokyo Institute of Technology

Tomoya Shoji

Supervisors:
Prof. Hiroshi Iwai
Associate Prof. Kuniyuki Kakushima

February 2015
Abstract

Silicon nanowires have been expected to provide potential advantages for photovoltaic applications over planar wafer-based or thin-film silicon photovoltaics owing to their enhanced light absorption. However, the photovoltaic characteristics of silicon nanowires might strongly suffer from the surface recombination due to their large surface-to-volume ratio and comparatively higher density of interface states than bulk silicon cells. Moreover, the structural change from the bulk cells might force the conventional use of surface passivation technologies to be further optimized or in some cases to be replaced by other technologies. In order to overcome these issues, the effects of interface states and changes in surface potential on photovoltaic characteristics of silicon nanowires must be clearly understood. In this thesis, starting from evaluation of interface states at silicon nanowire/thermal oxide interfaces, the effects of interface states and surface potential control on silicon nanowire photovoltaics were experimentally characterized. The obtained results indicated that surface passivation of silicon nanowires require precise control of processes and much sever conditions for high efficiency photovoltaic conversions.

The silicon nanowire solar cells were fabricated on silicon-on-insulator substrates with thermal oxide passivation for top surface and sidewalls. By adopting charge pumping technique, the interface states were characterized directly from the silicon nanowire solar cells. From the measurement of nanowires with different cross sections, the rounded corners were shown to have extremely high density of interface states more than one order higher than flat surfaces, and the photovoltaic characteristics steeply degraded due to the increase of surface recombination in small cross sections. For the evaluation of surface potential control effects, a back substrate electrode was formed on the rear surface of the
silicon nanowire solar cells. As a result of controlling the surface potential by applying field-effect to the bottom surface, a major change in current-voltage characteristics was clearly observed. Considering the behavior of depletion region under applied electric field, the excess shifting of surface potential to negative or positive results in a limitation of hole current or electron current, respectively. The results indicate that the conventional high field-effect surface passivation for the reduction of surface recombination will not benefit the silicon nanowire solar cells unless precisely control the amount of fixed charges in passivation layers.

In conclusion, the importance of a dramatic reduction of interface states are inevitable for achieving high efficiency silicon nanowire solar cells. Also the development of the novel surface passivation technologies which enables precise control of processes and materials for the suppression of surface recombination. The results in this thesis pointed out the problems lying ahead toward the improvement of silicon nanowire solar cells from the aspect of surface passivation.
Contents

Abstract ..i
Contents ..iii

1 Introductions
 1.1 Advantages of Silicon Nanowires as Solar Cell Structures .. 1
 1.2 Issues in Surface Passivation of Silicon nanowires .. 4
 1.3 Purpose of This Thesis ... 6
 References .. 7

2 Fabrication of Nanowire Solar Cells
 2.1 Overview of Device Fabrication Procedures .. 8
 2.2 Details of Key Steps .. 12
 2.2.1 Patterning of Silicon Nanowire ... 12
 2.2.2 Surface Passivation ... 14
 2.2.3 Junction Formation .. 16
 2.2.4 Hydrogen Termination of Interface States ... 19
 References .. 21

3 Interface Characterizations
 3.1 Basic Principles in Charge Pumping Technique .. 24
 3.1.1 Explanation of Conventional Method for MOS Structures 24
 3.1.2 Modified Charge Pumping Technique for Gated Diodes 28
 3.2 Measurement of Charge Pumping Characteristics .. 29
 3.2.1 Effects of Pulse Frequency on Charge Pumping ... 29
 3.2.2 Determination of Undoped Nanowire Region Length ... 32
 3.2.3 Effects of Nanowire Narrowing on Density of Interface States 34
 3.3 Extraction of Discrete D_{it} at Rounded Corners ... 38
 3.4 Effects of Corners on Surface Passivation Reliability ... 41
3.5 Conclusions for This Chapter .. 45
References ... 45

4 Evaluation of PV Characteristics
4.1 Basic Principles for Evaluation of PV Characterization .. 48
 4.1.1 Interpretation of Current-Voltage Characteristic .. 48
 4.1.2 Figure of Merits for Solar Cells ... 49
 4.1.3 Effects of Series and Shunt Resistance ... 50
4.2 Current-Voltage Characteristics of Silicon Nanowire Solar Cells 51
4.3 Effects of Interface States on PV Characteristics .. 54
4.4 Effects of Surface Recombination at Depletion Region 54
4.5 Discussions ... 57
 4.5.1 A Model for Nanowire Width Dependence ... 57
 4.5.2 A Model for Nanowire Length Dependence ... 58
4.6 Conclusions for This Chapter ... 60
References ... 61

5 Effects of Surface Properties
5.1 Bottom Surface Potential Control ... 62
5.2 Demonstration of Surface Potential Control with Thin Al₂O₃ Layer 67
5.3 Discussions ... 62
 5.3.1 Effects of Bottom Surface Potential Control on PV Characteristics 69
 5.3.2 Effects of Surface Passivation with Thin Al₂O₃ Layer 73
5.4 Conclusions for This Chapter ... 75
References ... 76

6 Conclusions .. 77
Presentations ... 79
Acknowledgements ... 80
This chapter overviews introductions for this thesis. The main advantages and issues on silicon nanowire solar cells will briefly be reviewed.

1.1 Advantages of Silicon Nanowires as Solar Cell Structures

Silicon nanowires are attracting extreme interest for future building block of high efficiency solar cells. Crystalline silicon solar cell have been running the forefront of solar cell industries for decades, however, the conversion efficiency of crystalline silicon is now approaching the theoretical limit of 29% [1.1]. In order to overcome this problem, a brand new technology or structure must be established for future improvement of solar cells.

Silicon as a solar cell material was the most common solution, however, the potential disadvantages were lying in front of this useful material. The bandgap of is 1.12 eV which is not optimum for solar cell applications. The optimum bandgap is known to be 1.4 eV to 1.7 eV since the solar cell spectrum includes higher intensity around these wavelength. (See Figure. 1.2) Moreover, the band structure of crystalline silicon is indirect bandgap which leads to a disadvantage on conversion efficiency.

From this view point, silicon nanowires are believed to have potential advantage for solar cell application for several reasons. For further, i.e. break-through, improvement of silicon solar cell efficiencies, the modulation of bandgap and band structure are necessary. Figure 1.2 shows the solar spectrum and absorption wavelength for silicon bandgap and silicon nanowire bandgap. As shown in the figure, silicon nanowires with bandgap of ~1.5 eV enables to absorb solar energy of high intensity wavelength. Silicon
nanowires are known to show bandgap enhancement in small diameters around 4 nm owing to the quantum confinement effects [1.3]. Also the band structure changes indirect to direct [1.4]. This is the most important advantage of silicon nanowires for solar cell applications, and is the reason why silicon nanowires are attracting special interest for future candidate for solar cells.

Another advantage of silicon nanowire solar cell is that they have light trapping effects. The three-dimensional array structures trap the light inside by enhanced surface scattering and optical confinement effect [1.5][1.6]. Owning to this enhancement of optical characteristics, silicon nanowire cells (especially with vertical arrays) show dramatically improved absorption efficiency compared to bulk silicon cells.

Figure 1.1 Best research-cell efficiencies for recent years. The efficiencies for crystalline silicon cells are approaching the theoretical limit of ~29% [1.2].
Figure 1.2 Spectral irradiance of sun at air mass (AM) 1.5 global conditions. The absorption wavelength of single crystal silicon and silicon nanowire are also shown in the figure.

Figure 1.3 Light trapping effects in silicon nanowires. A drastic reduction of transmission efficiency was observed in wafers with nanowire arrays [1.5].
1.2 Issues in Surface Passivation of Silicon Nanowires

However, some sever difficulties on the application of silicon nanowires for solar cells are lying ahead. One of the most crucial issues is the surface passivation of silicon nanowires. Nanowire structures have extremely large surface-to-volume ratio, the photovoltaic characteristics might strongly suffer from surface properties.

Surface passivation of silicon nanowires need to overcome some challenges. First, the reduction of interface states. The nanowire consist of several orientated surfaces including high-index surfaces, the density of interface states are quite high even with silicon dioxide passivation. Second, structural difficulties. Since the passivation for silicon nanowires surround the depletion region, the technical demand for surface passivation might be different from those of conventional structures. Also, as the surface passivation have interface at depletion region of silicon nanowires, the contributions of interface states at depletion region on solar cell performance is still unclear. Third, precise surface potential controlling. In conventional solar cells, the surface recombination at the interface states were reduced by band bending at interfaces induced by fixed charges in passivation layer. However, since the volume of silicon nanowires are quite small, the surface potential must be controlled precisely at optimized conditions.

Many works reported the photovoltaic effects of silicon nanowires, however, the conversion efficiency is still quite low [1.7]. The origin of low efficiency is still unclear, however, from the point of surface passivation, the reduction of surface recombination at interface states might be the key technology for further improvement of silicon nanowire photovoltaics.
Figure 1.4 Schematic image of surface passivation for p-i-n silicon nanowires.

Figure 1.5 Surface recombination at interface states. Trapping of photo generated carriers occur in depletion region of p-i-n structure.
1.3 Purpose of This Thesis

From these viewpoints, this study focuses on interface characterization of silicon nanowires, evaluation of effects of interface states at depletion region on silicon nanowire photovoltaics, and surface potential controlling of silicon nanowires to suppress the surface recombination at interface states. The goal of this study is to clarify the effects of interface states on silicon nanowire solar cells and propose a way to reduce those effects with precise control of surface potential.

Figure 1.6 shows the structure tree of this thesis. This thesis
References

2 Fabrication of Nanowire Solar Cells

In this chapter, methods for the fabrication of silicon nanowires solar cells will be briefly reviewed.

2.1 Overview of Device Fabrication Procedures

Figure 2.1 shows a flow chart of process steps for \(p-i-n \) silicon nanowire diodes. Silicon nanowires were fabricated with (100)-orientated silicon-on-insulator (SOI) substrates on 140-nm-thick buried oxide (BOX) layer. The details of nanowire patterning are explained in following section. Nanowires fabricated on BOX layer were carefully cleaned with sulfuric acid (\(\text{H}_2\text{SO}_4 \)) and hydrogen peroxide (\(\text{H}_2\text{O}_2 \)) mixture (SPM) followed by chemical oxide etching with 1% diluted hydrogen fluoride (HF). Silicon nanowires were subsequently oxidized in \(\text{O}_2 \) ambient at 1000°C to form the thermal oxide (\(\text{SiO}_2 \)) around the silicon surface. Since silicon nanowires consist of several crystalline orientations, the thickness of thermal oxide was not uniform for every surfaces, the actual thickness were controlled around 10 nm to 25 nm, and the corners had the thinnest. The thickness of thermal oxide was not so important in this study, the only limitation for the thickness was sufficient for prevent the gate leakage current for gated diodes, and for surface passivation of silicon surfaces.

The junction for \(p-i-n \) diode structure was formed by ion implantation of \(\text{P}^+ \) ion and \(\text{BF}_2^+ \) ion for cathode and anode, respectively. The gas sources were phosphine (\(\text{PH}_3 \)) and boron trifluoride (\(\text{BF}_3 \)). Each of the ions was accelerated from 20 kV to 30 kV
depending on the thickness of thermal oxide and the residual thickness of SOI layers. The implanted ions were then activated in N\textsubscript{2} ambient at 800°C for 30 minutes. After configuring the anode and cathode regions, 50-nm-thick titanium nitride (TiN) gate electrode was deposited by radio frequency (RF) magnetron sputtering technique for gated diodes used in interface characterizations. Note that the deposition of gate electrode was omitted for the solar cells fabrication. Thermal dioxide at the both ends of silicon nanowires were removed with buffered hydrogen fluoride (BHF) solution, and 60-nm-thick aluminum (Al) contact electrodes were deposited by RF magnetron sputtering. 50-nm-thick Al back side electrode was deposited by thermal evaporation technique, and the substrates were annealed in forming gas (FG), mixture of 3% H\textsubscript{2} and 97% N\textsubscript{2} gas, at 420°C for 30 minutes for the H-termination of dangling bonds. Note that all the measurements were conducted at room temperature conditions (T = 300 [K]). Figure 2.2 shows schematic image of device structure, SEM image of the device, and cross-sectional TEM image of a nanowire. Note that the silicon nanowires were connected in parallel.
Fabrication of Nanowire Solar Cells

Figure 2.1 Flow chart of process steps for (gated) p-i-n diodes fabricated on silicon-on-insulator substrates.
Figure 2.2 Structure of silicon nanowire solar cells. (a) Top view of one device fabricated on a silicon-on-insulator substrate. A hundred nanowires are electrically connected in parallel. Cross section view of (b) Y-Y' direction and (c) X-X' direction. (d) SEM image of the silicon nanowire solar cells and cross-section TEM image of a nanowire.
2.2 Details of Key Steps

2.2.1 Patterning of Silicon Nanowire

Figure 2.3 shows schematic illustrations of silicon nanowire pattering steps. In this work, three different substrates with SOI thickness of 30, 50, and 60 nm were used. Silicon nanowires were fabricated with 30-nm-thick and 50-nm-thick SOI substrates, and 60-nm-thick SOI substrates were used for planar devices as references for characterization. SiN hard mask was deposited on carefully cleaned SOI substrates, and patterned in line and spaces. Then the SOI layer was etched by reactive ion etching (RIE), and SiN hard masks were removed at last. Note that BOX layer was over etched during the silicon nanowire patterning in order to obtain sharp bottom edges (Figure 2.4). The width of silicon nanowires after SiN hard mask removal was measured with scanning electron microscope (SEM). Nanowires on 30-nm-thick SOI substrates varied from 40 nm to 160 nm and nanowires on 50-nm-thick SOI substrates varied from 45 nm to 170 nm, respectively. Measure width was plotted against sample ID numbers in Figure 2.5.

![Figure 2.3](image)

Figure 2.3 Schematic illustrations of silicon nanowire pattering steps.
Figure 2.4 Effects of over etching on sharpness of silicon nanowire bottom edges.

Figure 2.5 Width of silicon nanowires against sample ID numbers. Width were measured with scanning electron microscope (SEM) after SiN hard mask removal.
2.2.2 Surface Passivation

Surface passivation, the main topic of this study, was performed by three different techniques. Thermal oxidation was the most common process for surface passivation. Figure 2.6 shows the thermal oxide thickness for silicon with various crystalline orientations. Each of the silicon substrates was oxidized in O\textsubscript{2} atmosphere with a flow of 1 L/min at 1000°C. Thermal oxide is known as a high quality interface with silicon which provides a low interface state density (D_{it}) and a low fixed charge density with optimized oxidation temperature [2.1]-[2.4]. The interface states exist between conduction band and valance band of silicon, i.e. bandgap of silicon, and they act as surface recombination centers, D_{it} at silicon nanowire/surface passivation interface must be suppressed as low as possible to improve the photo conversion efficiency. From this aspect, thermal oxide was adopted for all the first layer passivation of silicon nanowires, and other passivation materials were subsequently deposited on thermal oxides.

Another technique for the surface passivation of silicon nanowires were atomic layer deposition (ALD) method [2.5][2.6]. ALD method is a deposition technique based on the reaction between surface of substrate and precursor gas of intended materials. A sequential use of self-terminating gas-solid reactions, as schematically shown in Figure 2.7, is the important point of ALD cycle. The ALD method consists of following four steps:

1. Initial substrate.
2. First self-terminating reaction by Reactant A
3. Purge with inert gas (Ar) and vacuuming.
4. Second self-terminating reaction by Reactant B
5. Purge with inert gas (Ar) and vacuuming. (Return to the step #2)

Since the ALD method based on self-terminating process, only one cycle of ALD provides one atomic layer of intent material which enables a precise control of material
thickness and uniformity as a cost of slow deposition rate. Another advantage of ALD method is that due to the gas-solid reactions, ALD also enables a uniform deposition to the three-dimensional structures which is not easily achieved with other deposition methods, *i.e.* sputtering, evaporating.

Figure 2.6 Thermal oxide thickness for silicon with various crystalline orientations. Silicon wafers with crystalline orientation of (100), (110), and (111) were annealed in O$_2$ atmosphere at 1000°C.

Figure 2.7 Schematic illustrations of atomic layer deposition (ALD) cycle.
2.2.3 Junction Formation

Junction formation is one of the most important issues for the improvement of nanowire devices. Since the nanowires have quite small volume and cross section, the existence of large series resistance is a crucial problem for any nanowire devices. To overcome this disadvantage of nanowire structures, many technologies were introduced by previous works.

Ion implantation is the most common technology for the junction formation of conventional planar devices due to its reliability, usefulness, and controllability. However, the problem of ion implantation to semiconductors are the interfacial amorphization of material crystalline structures which was conventionally overcame by recrystallization with post annealing at high temperature [2.7][2.8]. For conventional planar devices, the recrystallization of interfacial amorphous layer was achieved due to the crystalline matching of substrate, in other words, the substrate acted as a seed of original crystalline orientation. For three-dimensional channel devices, i.e. fins and nanowires, the amorphization of interfacial layer was proved to be a more grave issue because there are more damage to the material crystalline at the corners of three-dimensional structures due to the angled implantation for sidewalls [2.9][2.10]. This amorphization causes increase in series resistance and variability in device performance which degrades the device reliability. Considering the solar cell applications, defects induced by this amorphization will be a recombination center and lifetime killer of photo-generated carriers. Since the nanowires are a small volume structure, the doping concentration is also an important parameter to optimized junction formation. Many of the studies on ion implantation damage showed that amorphization of silicon crystalline relates to both doping concentration and implantation temperature [2.11][2.12]. Colli, et al. investigated the ion implantation into silicon nanowire with varying the doping concentration, and concluded that full recrystallization of crystalline silicon nanowires can be achieved by annealing at 800°C for doping concentration upto
10^{15} cm$^{-2}$ [2.13]. In this study, the formation of junction was achieved by conventional ion implantation technique with varying doping concentration in the order of 10^{14} cm$^{-2}$. The recrystallization anneal was adopted by rapid thermal annealing in N$_2$ ambient at 800°C for 30 minutes which meets the conditions introduced in previous works.

![Figure 2.8](image1.png)

Figure 2.8 Transmission electron microscopy (TEM) image of Fin amorphization after ion implantation at room temperature. (Left) Before recrystallization and (Right) after recrystallization annealing [2.10][2.10]

![Figure 2.9](image2.png)

Figure 2.9 Amorphizing doping concentration versus implantation temperature [2.12].
Epitaxial growth of doped silicon is also an effective way to form the junction to three dimensional structures. Devices using this technique for source and drain regions reported high performance electric characteristics even in extremely scaled sizes [2.14][2.15]. This technique enables a uniform junction formation independent of nanowire sizes, however, there are many fabrication process difficulties in order to adopt, and the minority carrier lifetime might be shorter due to its low crystalline orientation. The other way to collect the carriers are to form a Schottky barrier contact at each ends of nanowires. Schottky barrier diode enables rectification without ion implantation and subsequent high temperature post annealing process which degrades the carrier lifetimes. However, since the suppression of metal diffusion into nanowires and highly transparence of top contact electrode are both necessary for solar cell applications, there lies the difficulties in selection of contact material.

Another important point for junction formation is the thickness optimization of depletion region. The $p-i-n$ diode is a special case of $p-n$ diode which has an intrinsic (or slightly doped) region between $p-n$ junctions. Figure 2.10 shows a schematic illustration of carrier transport for each type of junction.
Hydrogen Termination of Interface States

The origin of interface states were known to be the existence of structural defects, oxidation-induced defects, metal impurities, or defects induced by bond breaking processes such as radiation or hot electron injections. The defect bonds, e.g. dangling bonds, which are the most major component of interface states can be neutralized by low-temperature annealing in hydrogen or hydrogen/nitrogen mixture (forming gas). The hydrogen termination of dangling bonds at silicon/thermal oxide interface was studied in detail by previous works, and it is well understood that the density of interface state strongly correlates to the crystalline orientation of silicon substrate underlying the thermal oxide [2.16][2.17]. For silicon/thermal oxide interface of silicon nanowires, the density of interface states are known to be higher than the planar silicon substrates due to the existence of high-index orientation sidewalls and corners [2.18]. The hydrogen termination is still effective approach for the
neutralization of dangling bonds of silicon nanowires consistent with the planar silicon [2.19]. In this work, the hydrogen termination was conducted by forming gas annealing in forming gas at 420°C for 30 minutes. (See Figure 2.11)

Figure 2.11 Changes in interface state distribution at silicon nanowire/thermal oxide interface with various forming gas annealing temperature [2.19].
References

3 Evaluation of Interface States

As introduced in Chapter 1, interface states must be reduced in order to maximize the efficiency since they act as recombination centers for the photo-generated carriers. This chapter explains results from the evaluation of interface states at silicon nanowire surface by charge pumping technique. Gate electrodes formed on silicon nanowire solar cells were used to characterize the interface states electrically. Starting from a brief explanation of charge pumping technique modulated for gated diodes, the results from the charge pumping measurements with silicon nanowire solar cells with various nanowire sizes will be discussed.

3.1 Basic Principles in Charge Pumping Technique

3.1.1 Explanation of Conventional Method for MOS Structures

Several techniques have been proposed for the determination of the surface states. Most of common techniques, i.e. capacitance-voltage (C-V) technique and conductance technique, were basically applicable for metal-oxide-semiconductor (MOS) structures [3.1]-[3.4]. For MOS transistors, subthreshold current technique [3.5], deep-level transient spectroscopy (DLTS) [3.6], direct-current current-voltage (DC-IV) measurement technique [3.7], and charge pumping technique were commonly adopted [3.8]. In this section, the basic principles of charge pumping technique are reviewed briefly. The main advantage of charge pumping technique is that it enables direct measurement of surface states with only preparing additional gate electrode on p-i-n diode structures, i.e. solar cells.
Charge pumping technique was first introduced by Brugler and Jespers for determination of interface states at MOS transistor channel/gate oxide interfaces [3.9]. This technique is based on charge recombination during trapping and detrapping of carriers at interface states induced by applied repetitive gate pulses. Figure 3.1 shows schematic illustration of charge pumping technique for n-type MOS transistors. The repetitive gate pulses of magnitude \(V_p \) sufficient to swing the surface potential in the channel of MOS transistor from inversion to accumulation condition and vice versa can stimulate a net flow of majority carriers between source/drain and substrates. While the gate pulse kept “off”, the surface potential of the channel accumulated and the interface

![Figure 3.1](image)

Figure 3.1 Schematic illustrations of charge pumping measurement. (a) Measurement setup for n-type MOS transistors, (b) trapezoidal gate pulse, and (c) behavior of channel surface band diagram under applied gate pulse.
states were subsequently filled with holes flew from substrate. On the other hand, the interface states were filled with electrons flew from source/drain region while the gate pulse kept “on”. Pulse duration \(t_w \) and pulse period \(1/f \) should be taken sufficiently long to assure all the surface states are filled with electrons or holes [3.8]. Since the carrier recombination occur only when trapped holes (electrons) remain at the interface states and capture of electrons (holes) subsequently take place, the important process in charge pumping technique happens during transition of gate pulse from “on” to “off” and vise versa. Because the electrons trapped at states near the conduction band or holes trapped at near the valence band will detrap to each band during the pulse transition, keeping the gate pulse transition time \(t_r, t_f \) short is important for accurate measurement of interface state density.

To improve the accuracy of charge pumping, the use of offset voltage \(V_{\text{base}} \) for gate pulse called base level technique was proposed by Elliot [3.10]. A schematic illustration of base level technique is shown in Figure 3.2. The repetitive gate pulses gradually shift positive as changing the applied offset voltage, and the interface state density was obtained by taking the charge pumping current at fully pumping condition. At fully pumping conditions, the surface potential of channel was sufficiently inverted or accumulated and interface states were completely trapped by electrons or holes. By measuring the charge pumping current while changing the offset voltage, the maximum current \(I_{\text{CP,max}} \) will be obtained during the fully pumping conditions so that a typical charge pumping current shows a hat shaped characteristics as schematically shown in Figure 3.3. From the measured \(I_{\text{CP,max}} \), the average of interface state density \(D_{it} \) can be expressed as follows,

\[
D_{it} = qfA_GI_{\text{CP,max}},
\]

where \(q, f, \) and \(A_G \) are the electron charge, gate pulse frequency, and surface area of the channel.
Evaluation of Interface States

Figure 3.2 A schematic illustration of base level technique for charge pumping. The repetitive gate pulses gradually shift positive as changing the applied offset voltage. The interface state density was obtained from the maximum charge pumping current at fully pumping condition [3.10].

Figure 3.3 A schematic illustration of charge pumping current obtained by base level technique. A typical charge pumping current shows a hat shape characteristics.
As shown in the Figure 3.2, the rising voltage and falling voltage of charge pumping current are strongly related with threshold voltage and flatband voltage, respectively. However, the value change with gate pulse magnitude, so the detailed explanation of threshold voltage or flatband voltage need other characterization technique to be adopted, for example, capacitance-voltage measurement.

3.1.2 Modified Charge Pumping Technique for Gated Diodes

Measurement of interface state density in silicon nanowire diodes with charge pumping technique was first reported by Kapila [3.11]. Since our silicon nanowire diodes were fabricated with SOI substrates, the charge pumping current won’t flow through the substrate so current must be able to measure at one of the two ends of silicon nanowires. From this point, silicon nanowires must be prepared with a p-i-n diode rather than a transistor structure. The measurement setups for p-i-n diode structure prepared on SOI substrate are shown in Figure 3.4. In this setup, charge pumping current was measured at p+ type end of silicon nanowire and also from the substrate to monitor the leakage current through the BOX layer. Since the cross section of silicon nanowire consist of four different surfaces, i.e. top, side, corner, and bottom, the area of gated region can be expressed as follows,

\[A_G = A_{\text{top}} + 2A_{\text{side}} + 2A_{\text{corner}} + A_{\text{bottom}}, \quad (3.2) \]

where \(A_{\text{top}} \), \(A_{\text{side}} \), \(A_{\text{corner}} \), and \(A_{\text{bottom}} \) are the area of top, side corner, and bottom surface respectively. Note that \(A_{\text{bottom}} \) can be neglected throughout the measurement because the gate electrode was not prepared with gate-all-around structure.
3.2 Measurement of Charge Pumping Characteristics

3.2.1 Effects of Pulse Frequency on Charge Pumping

Figure 3.5 shows measured charge pumping current characteristics obtained from gated p-i-n silicon nanowire diodes with two different cross section. Typical hat shaped characteristics were obtained, indicating that successive charge pumping measurement were obtained with our gated p-i-n silicon nanowire diodes. When thinning the nanowire thickness from 34 nm to 12 nm, the charge pumping current decreased but maintained the typical hat shape characteristics. The decrease in charge pumping current mainly relates to the current component from the side walls, which will be discussed in later section.
Figure 3.6 shows the changes in charge pumping current against different pulse frequencies. Note that pulse duty factor was kept to be 50% by controlling the pulse width (t_w) while changing the pulse frequency. As shown in the figure, charge pumping current clearly decreased with decreasing the pulse frequency. Figure 3.7 shows the plot of maximum charge pumping current against different pulse frequency. Since the relationship between charge pumping current and pulse frequency is given by Eq. (3.1), the proportional relationship between the maximum charge pumping current and the pulse frequency, as shown in the figure, is consistent with the principle of charge pumping method. This proportional relationship can also be seen when varying the nanowire width. These results assure the measurement of nanowire width dependence as described in following section. In following measurements, pulse frequency was chosen as 10 kHz from the proportional region.
Figure 3.6 Charge pumping current against different pulse frequencies. Pulse duty factor was kept 50\% by controlling pulse width (t_w) while changing the pulse frequency from 400 kHz down to 10 kHz.

Figure 3.7 The maximum charge pumping current ($I_{CP,max}$) versus pulse frequency.
3.2.2 Determination of Undoped Nanowire Region Length

Figure 3.8 shows the changes in maximum charge pumping current ($I_{CP,max}$) against depletion region length with three different nanowire width. $I_{CP,max}$ for each nanowire were plotted against nanowire length in Figure 3.9. $I_{CP,max}$ proportionally decreased as depletion region shortened indicating that the surface of silicon nanowires can be assumed to be uniform independent of their length. The linear fitting results, as shown in the figure with dashed lines, had the same x-axis intercept at around 230 nm. Figure 3.10 describes the method for estimation of actual depletion region length from measured data. In this study, photolithography process was used for mask patterning of ion implantation, and there are some artificial mask alignment errors. Since the actual

![Figure 3.8](image)

Figure 3.8 Changes in charge pumping current against different nanowire length for nanowire cross section of 34 x 85 nm². Current decreased as nanowire length shortened.
Figure 3.9 Changes in maximum charge pumping current against different nanowire length. Current decreased as nanowire length shortened.

Figure 3.10 A Schematic illustration for estimation method of actual depletion region length.
length of depletion region is necessary in order to calculate the density of interface states, we have to estimate the actual length from the measured data. As described before, the linear fitting of measured data in Figure 3.9 showed the same x-axis intercepts. If there are no alignment errors for photolithography processes, the x-axis intercepts should be zero which means the charge pumping current should be zero when there is no undoped depletion region under the gate electrodes. From this assumption, the value of x-axis intercept can be interpreted as the alignment error of photolithography process for the patterning of ion implantation masks. By taking the differential of mask designs and obtained alignment errors, the actual length of undoped depletion region can be estimated from the measured data. This estimation was used for all the devices in this work, and obtained actual length was used in order to calculate the density of interface states.

3.2.3 Effects of Nanowire Narrowing on Density of Interface States

Figure 3.11 shows the changes in charge pumping current when varying nanowire width from 147 nm to 35 nm. Gradual decrease of the charge pumping current was observed, and the rising and falling voltage both shifted positive as decreasing the nanowire width. The positive shifts of rising and falling voltage indicating the threshold voltage and flatband voltage changed when decreased the nanowire width, respectively. Although the detailed analysis of this voltage shift should adopt other characterizing technique as described in previous section, it should be noted that this behavior might due to the effects of fixed charges in thermal oxide layer and more strongly affect the surface properties in thinner nanowires.
Figure 3.12 shows the calculated density of interface states (D_{it}) against the nanowire width (w_{nw}) for two different nanowire thicknesses (h_{nw}). Nanowires used in this study showed D_{it} in order of 10^{11} cm$^{-2}$eV$^{-1}$ which is consistent with the value of work done by Kapila, et al. [3.11]. However, the interface state density gradually increased while changing the nanowire width which was not observed in previous work. In order to understand this behavior, the effect of corners must be taken into account. Cassé, et al. reported that nanowires with circular cross sections have higher density of interface states than nanowires with rectangular cross sections [3.12][3.12]. Nanowires used in this study have rectangular cross section, but rounded corners. When scaling down the nanowire width, the ratio of surface area for rounded corners and sidewalls will increase. In other words, the discrete density of interface states at corners and sidewalls, which might be higher than at top surface, strongly affects the total density in
smaller nanowires. In order to verify this assumptions, extraction of discrete density by using simple model will be discussed in next section.

![Figure 3.12](image)

Figure 3.12 Density of interface states (D_{it}) against nanowire width (w_{nw}). Opened circles represent data from 12-nm-thick nanowires and closed rectangles represent data from 34-nm-thick nanowires, respectively.
Figure 3.13 (a)(b) Energy distribution of density of interface states for planar SOI transistor, rectangular nanowire transistor, and circular nanowire transistor. Nanowires with circular cross section showed higher density [3.12].
3.3 Extraction of Discrete D_{it} at Rounded Corners

Figure 3.15 shows a schematic illustration of the model for extraction of discrete density of interface states for each surface of nanowires. In this model, we have assumed different density of interface states for each of the surfaces individually. From the Eq. (3.2), the total surface area of undoped depletion region when neglecting the bottom surface is given by follows,

$$A_G = A_{top} + 2A_{side} + 2A_{corner}, \quad (3.3)$$

where $A_{top} = (w_{nw} - 2\Delta) \cdot l_{nw}$, $A_{side} = (h_{nw} - \Delta) \cdot l_{nw}$, $A_{corner} = L_\Delta \cdot l_{nw}$, l_{nw} is the length of undoped depletion region, and Δ is the radius of rounded corners. The circumference of rounded corners (L_Δ) is expressed as $L_\Delta = 2\pi \Delta / 4$. In addition, when expressing discrete density of interface states as $D_{it,top}$, $D_{it,side}$, and $D_{it,corner}$, respectively, the measured D_{it} can be expressed as follows,

$$D_{it} \cdot A_G = D_{it,top} \cdot A_{top} + D_{it,side} \cdot 2A_{side} + D_{it,corner} \cdot 2A_{corner}. \quad (3.4)$$
Figure 3.16 shows a TEM image of rounded corners. As shown in the figure, the radius of rounded corners were \(~3.3\) nm. We have assumed this measured radius as a constant value for every nanowires used in this study. Figure 3.17 shows the best fitted calculation results for measured data as shown in Figure 3.12 previously. By adopting this model, the calculated density of interface states showed good agreement with measured data when the discrete density of interface states were \(D_{\text{it, top}} \sim 6.0 \times 10^{10}\) cm\(^{-2}\)eV\(^{-1}\), \(D_{\text{it, side}} \sim 1.3 \times 10^{11}\) cm\(^{-2}\)eV\(^{-1}\), and \(D_{\text{it, corner}} \sim 2 \times 10^{12}\) cm\(^{-2}\)eV\(^{-1}\), respectively. Note that \(D_{\text{it, corner}}\) for 34-nm-thick nanowire and 12-nm-thick nanowire were slightly different indicating that the corners of thinner nanowires are more damaged by nanowire patterning process. Table 3.1 concludes the parameters for this fitting. The density of interfaces states for rounded corners was in order of \(10^{12}\) cm\(^{-2}\)eV\(^{-1}\) which was more than one order higher than the value of top or sidewalls. This result indicates that randomly orientated rounded corners have quite complex surface properties, and this fact might be a crucial issue for the reliability of future application of nanowires with small diameters. From this view point, the effects of rounded corners on reliability of
surface passivation for silicon nanowires will be discussed in the following section.

Figure 3.16 Transmission Electron Microscopy (TEM) image of rounded corner. The radius of corners was ~ 3.3 nm.

Figure 3.17 Fitted calculation results on measured data shown in Figure 3.12. The calculation results best fitted with parameters shown in Table 3.1.
In order to characterize the effects of rounded corners on the reliability of surface passivation, Fowler-Nordheim (FN) injection was adopted to the gated p-i-n silicon nanowire diodes. Figure 3.18 shows a schematic illustration of FN injection on gated p-i-n diode structure. As described in the figure, positive bias was applied to the gate electrode in order to inject electrons into the thermal oxide while cathode electrode was grounded. On the other hand, negative bias was applied to the gate electrode to inject holes while anode electrode was grounded. Charge pumping measurement was subsequently conducted after the carrier injection in order to monitor the generation of defects or interface states. From the time evolution of interface state generation for various nanowire cross sections, the reliability of surface passivation of silicon nanowires can be characterized.
Evaluation of Interface States

Figure 3.18 A schematic illustration of Fowler-Nordheim (FN) injection on gated p-i-n diodes. (a) Electron injection and (b) hole injection into the gate oxide.

Changes in charge pumping current under high-field FN injection with nanowire cross section of $93 \times 34 \text{ nm}^2$ are shown in Figure 3.19. Positive bias of 10 V was applied to gate electrode while cathode grounded, and the changes in charge pumping current was monitored. Charge pumping current clearly increased more than one order higher indicating that interface states were generated under FN injection. Note that contributions of injected electrons into SiO$_2$ layers to charge pumping current were negligible since the shifts in V_t or V_{fb}, as explained in previous section, were quite small even after 100 second of FN injection.

Time evolution of density of interface states under FN injection with varying nanowire cross section are shown in Figure 3.19. Interface states for nanowires with cross section of $30 \times 12 \text{ nm}^2$ increased rapid than others, almost one order higher after 100 second injection, while nanowires with largest cross section ($134 \times 34 \text{ nm}^2$) only doubled. Figure 3.20 shows the changes in density of interface states against nanowire width with varying stressing time. Interface states clearly increased with keeping the same trend of before injecting electrons, however seen at data of 1 second injection (light gray in the figure), increase in thinner nanowires ($h_{nw} = 12 \text{ nm}$) were quite large.
while slightly increased in thicker nanowires. These results indicating that the ratio of corners severely affect the stability of surface passivation.

![Graph showing time evolution of density of interface states under high-field Fowler-Nordheim injection. Nanowires with smallest cross section increased rapidly.](image)

Figure 3.19 Time evolution of density of interface states under high-field Fowler-Nordheim injection. Nanowires with smallest cross section increased rapidly.
Figure 3.20 Changes in density of interface states against nanowire width with various high-field Fowler-Nordheim injection time. Left figure for $h_{nw} = 34$ nm and right for $h_{nw} = 12$ nm.
3.5 Conclusions for This Chapter

In this section, the interface states at silicon nanowire/thermal oxide interface were characterized by adopting gated p-i-n silicon nanowire diodes. Charge pumping method was adopted for the measurement of density of interface states.

From the measurement of different cross section nanowires, the effects of rounded corners on density of interface states were extracted. By assuming discrete density for top, sidewalls, and corners individually, the extracted density for rounded corners were in order of 10^{12} cm$^{-2}$eV$^{-1}$ which was more than one order higher than other flat surfaces. This results indicating that the management of rounded corners is especially important issue for the reduction of interface states for future scaling down of nanowire diameters. From the point of reduction of interface states, nanowires with rectangular like cross section can be a promising candidate for future nanowire applications.

Although, the effects of rounded corners on the reliability of surface passivation of nanowires were characterized by adopting Fowler-Nordheim injection method. After electron injection into the thermal oxide, the charge pumping current clearly increased which was more than doubled in density of interface states. By comparing different cross sections, interface states for nanowires with larger rounded corner ratio increased rapidly than others which indicating the less stability of rounded corners than flat surfaces.
References

Evaluation of Interface States

In this chapter, the effects of interface states on photovoltaic (PV) characteristics of silicon nanowires will be experimentally discussed. The effects were evaluated by changing the nanowire sizes and cross-sections.

4.1 Basic Principles for Evaluation of PV Characteristics

4.1.1 Interpretation of Current-Voltage Characteristics

Figure 4.1 shows equivalent circuit for solar cells. A general expression for the current produced by an ideal solar cell is,

\[I = I_{ph} - I_{01} \left(e^{qV/nkT} - 1 \right), \]

(4.1)

where \(I_{ph} \) is photocurrent of solar cell, \(I_{01} \) is the saturation current, \(n \) is the ideality factor of diode \(I_{01} \) which goes \(n = 1 \) for ideal diodes. For non-ideal cases, we shall consider some resistances and non-ideal diodes which degrade the solar cell current-voltage,

\[I = I_{ph} - I_{01} \left(e^{q(V+IR_{s})/nkT} - 1 \right) - I_{01} \left(e^{q(V+IR_{s})/2nkT} - 1 \right) - \frac{V+IR_{s}}{R_{sh}}, \]

(4.2)

where \(I_{02} \) is the saturation current for diode 2, \(n \) is the ideality factor of diode 2, and \(R_{s} \) and \(R_{sh} \) are series resistance and shunt resistance of solar cells, respectively. Here, we consider two diodes connected in parallel for simplicity. One diode represents the recombination current in the quasi-neutral regions which ideality factor is \(n_{1} = 1 \), and the other represents recombination in the depletion region which ideality factor is \(n_{2} = 2 \). For
Evaluation of PV Characteristics

4.1.2 Figure of Merits for Solar Cells

Figure 4.2 shows calculated current-voltage curve of an ideal solar cell ($R_s = 0$, $R_{sh} = \infty$) for a case of $I_{ph} = 55$ mA, $I_{01} = 10^{-13}$ A, $I_{02} = 10^{-13}$ A, $n_1 = 1$, $n_2 = 2$, $T = 300$ K. For figure of merits of solar cells, fill factor (FF), i.e. the squareness of the curve, and efficiency η are defined. The general expression for fill factor is following,

$$FF = \frac{I_{mp}V_{mp}}{I_{sc}V_{oc}} = \frac{P_{mp}}{P_{sc}}$$

(4.3)

where I_{sc} is the short-circuit voltage, V_{oc} is the open-circuit voltage, I_{mp} and V_{mp} are the current and voltage at maximum power point, respectively. Since the solar cells are used at the maximum power point of the cell, the efficiency of a solar cell is
Evaluation of PV Characteristics

\[\eta = \frac{P_{mp}}{P_{in}} = \frac{FF \cdot I_{sc} \cdot V_{oc}}{P_{in}}, \]

(4.4)

where \(P_{in} \) is the incident power from the sun. By interpreting equation (3.6), increasing \(FF, I_{sc}, V_{oc} \) are the most important key for improvement of solar cell performances.

4.1.3 Effects of Series and Shunt Resistances

Figure 4.3 shows a schematic illustration for the effect of series resistance and shunt resistance on current-voltage curve of an illuminated solar cell. Current-voltage curve for ideal cell is shown with dashed line. The series resistances degrade the current and the shunt resistance degrade the open-circuit voltage of the cell. Therefore, the existence of these resistances can be observed by evaluating the fill factor of the cell.

![Current-voltage curve of an ideal solar cell](image)

Figure 4.2 Current-voltage curve of an ideal solar cell \((R_s = 0, R_{sh} = \infty)\) with \(I_{ph} = 55 \text{ mA}, I_{01} = 10^{-13} \text{ A}, I_{02} = 10^{-13} \text{ A}, n_1 = 1, n_2 = 2, T = 300 \text{ K}\). The maximum power point and schematic expression of the fill factor \((FF)\) are shown in the figure.

4.1.3 Effects of Series and Shunt Resistances

Figure 4.3 shows a schematic illustration for the effect of series resistance and shunt resistance on current-voltage curve of an illuminated solar cell. Current-voltage curve for ideal cell is shown with dashed line. The series resistances degrade the current and the shunt resistance degrade the open-circuit voltage of the cell. Therefore, the existence of these resistances can be observed by evaluating the fill factor of the cell.
Evaluation of PV Characteristics

4.2 Current-Voltage Characteristics of Silicon Nanowire Solar Cells

Figure 4.3 Effect of series resistance and shunt resistance on current-voltage curve of an illuminated solar cell. Current-voltage curve for ideal cell is shown with dashed line. The squareness of the curve, i.e. fill factor, degrades with existence of either or both of the resistances.

Figure 4.4 shows current-voltage characteristics under dark condition for various nanowire width. Well defined diode characteristics with clear rectification and small leakage current. Since the current was quite small even with one hundred nanowires connected in parallel, it was difficult to evaluate diode ideality factor n from the current-voltage measurements.

Figure 4.5 shows the current voltage characteristics under illumination of 100 mW/cm² (AM1.5 G) for various nanowire width. The measured current was divided by one hundred in order to average out the current for single nanowire. As scaling down the nanowire width, the short-circuit current decreased while keeping the open-circuit voltage
around 0.5 V ~ 0.55 V. Figure of merits for typical nanowire solar cells with various nanowire width are shown in Table 4.1. The area used in calculating current density J_{sc} (mA/cm2) was reflexible surface which was define by product of nanowire width and length. As comparing the current density for each nanowire cross sections, it was clear that the density was somehow increased as nanowire width scaled down. The fill factor (FF) was around 50 % which must be improved by reducing the resistances. The conversion efficiency (η) was quite small indicating that the laterally formed silicon nanowires are thin enough to transmit the light, in other words, the absorption efficiency were quite small for our cells. Note that the current characteristics showed few dispersion when measurement was conducted immediately after the forming gas annealing. The instability of current-voltage characteristics will be described in appendix.

![Figure 4.4](image_url)

Figure 4.4 Dark current-voltage characteristics for various nanowire width. Leakage current at reverse bias was not observed.
Figure 4.5 Current-voltage characteristics under illumination of 100 mW/cm2 (AM1.5 G) for various nanowire width. Current decreased as nanowire width scaled down. The open-circuit voltage was around 0.5 V. Data shown in the figure are the average of 100 nanowires connected in parallel.

Table 4.1 Figure of merits for typical nanowire solar cells

($h_{nw} = 21$ nm, $l_{nw} = 1.5$ μm)

<table>
<thead>
<tr>
<th>w_{nw}</th>
<th>Average</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I_{sc} (pA)</td>
<td>J_{sc} (mA/cm2)</td>
</tr>
<tr>
<td>26 nm</td>
<td>0.90</td>
<td>2.3</td>
</tr>
<tr>
<td>79 nm</td>
<td>1.7</td>
<td>1.4</td>
</tr>
<tr>
<td>150 nm</td>
<td>2.2</td>
<td>0.98</td>
</tr>
</tbody>
</table>
4.3 Effects of Interface States on PV Characteristics

4.3.1 Effects of Nanowire Narrowing

Figure 4.6 shows a summary of short-circuit current and open-circuit voltage against nanowire width for two different nanowire length $l_{nw} = 1.5, 9 \ \mu m$. The short-circuit current decreased as nanowire width scaled down while the open-circuit kept the same or showed no clear dependence on nanowire width. When comparing these two different nanowire length, as shown in the figure, the slope of short circuit-current clearly changed at $w_{nw} \sim 75 \ \text{nm}$ in short nanowires ($l_{nw} = 1.5 \ \mu m$) while proportionally decreased in long nanowires ($l_{nw} = 9 \ \mu m$). For open-circuit voltage, there were no clear dependence on nanowire width was observed.

4.3.2 Effects of Surface Recombination at Depletion Region

Figure 4.7 shows the short-circuit current and open-circuit voltage against undoped depletion region length with various nanowire width. The short-circuit current showed different peaks for each width. This peak shift to shorter length as the nanowire width scaled down. Figure 4.8 shows a summary of peak position.
Evaluation of PV Characteristics

Figure 4.6 Effect of nanowire width (w_{nw}) scaling on solar cell (a) short-circuit current I_{sc} and (b) open-circuit voltage V_{oc} for various nanowire length. I_{sc} first gradually decreased as w_{nw} scaled down, and abruptly degrade under ~ 80 nm. However, I_{sc} slightly increased for nanowires with $w_{nw} < 50$ nm. V_{oc} varied around 0.50 ~ 0.55 V which showed no clear dependence on w_{nw}.
Figure 4.7 Effect of undoped region length \((l_{nw}) \) on solar cell (a) short-circuit current \(I_{sc} \) and (b) open-circuit voltage \(V_{oc} \). The peak shifts of \(I_{sc} \) is indicating higher surface recombination in smaller nanowires limit the collection of generated carriers in undoped region. \(V_{oc} \) varied around 0.50 ~ 0.55 V which showed no clear dependence on \(l_{nw} \).
In order to understand the behaviors in Figure 4.6, we consider two regions as shown in Figure 4.9. In the region marked as red in the figure, the difference of slope can be understood by taking into account the carriers generated outside the depletion region length. In doped region, the generated carriers can be collected if the generation occurred outside of depletion region within the length of diffusion length for electrons in anode and holes in cathode, respectively. Interface states in doped regions are trapped with majority carriers, the effect of interface states density increase as nanowire width scaling might be small in the doped regions. From this aspect, the slope of short-circuit current was reduced in short nanowires due the effect of carrier generation outside the depletion

4.4 Discussions

4.4.1 A Model for Nanowire Width Dependence
region is stronger than the longer nanowires. In the region marked as blue in the figure, where the slope changed in short nanowires, the effect of sidewalls and corners will abruptly increase. Since the density of interface states are quite high at sidewalls and corners, as described in chapter 3, the effects on surface recombination might be more obvious in small nanowire width. The slight increase of current in smaller width can be understood by including the effect of optimum length that the smaller nanowires are approaching the optimum length as discuss in next section.

Figure 4.9 Explanations for I_{sc} vs w_{nw} dependence for nanowires with $h_{nw} = 21$ nm and $l_{nw} = 1.5 \mu$m. Degradation of I_{sc} as scaling the w_{nw} indicate increasing effects of high D_i in small cross section nanowires.

4.4.2 A Model for Nanowire Length Dependence

Figure 4.10 shows schematic illustration of a model for depletion region length dependence. Depletion region length are shown as red square. We consider average length
(\(L_D\)) that generated carriers can drift inside the depletion region. When the carriers generated in the depletion region, they are immediately drift to opposite side due to the electric field inside the depletion region. Since interface states at the depletion are active as recombination centers and can trap or detrap carriers drifting the depletion regions, the length of carriers can drift are limited by the surface recombination. At the peak position of the short-circuit current, the length of depletion region and \(L_D\) matches. In other words, the depletion region length are sufficient absorb capable light and not exceeding the length that generated carriers can drift without affected by surface recombination. From this view point, this length must vary as the density of interface state changes even is the cross section are same.

Figure 4.10 Schematic illustration of a model for depletion region length dependence of short-circuit current \(I_{sc}\). The peak observed in the measured data corresponds to figure B where the depletion region length matches the drift length of generated carriers.
4.5 Conclusions for This Chapter

In this chapter, the photovoltaic characteristics of nanowire solar cells with various nanowire cross section and length. The effects of surface recombination on current-voltage characteristics are investigated by comparing data from nanowires with different sizes. The effects of surface recombination at the interface states strongly affects the solar cell performance especially in smaller nanowires. Taking into account the slight increase in short-circuit current in small width, further improvement might be achieved by optimizing the nanowire surface passivation. Also from the measurement of current-voltage characteristics of different nanowire length, the existence of optimum nanowire length was observed.
References

In this chapter, the effects of surface potential fluctuation on PV characteristics of silicon nanowire solar cells are experimentally discussed by adopting backgated diode structures. The method is based on the principles of surface effects on gated diodes [5.1]. By applying voltage to the substrates, the bottom surface potential of silicon nanowire solar cells were controlled and the photovoltaic characteristics were measured under different surface conditions. The control of surface potential was also obtained by depositing thin Al_2O_3 layer to the surface of silicon nanowires. The results from gated solar cells and Al_2O_3 deposited solar cells were compared.

5.1 Bottom Surface Potential Control

Figure 5.1 shows the evaluation method for effects of surface potential controlling on solar cells. Substrate electrode formed on back substrate was biased under illumination, and measured the current-voltage characteristics while applying the substrate voltage (V_{sub}). Since the doped region are highly doped and stuck to their original positions, only the undoped region shifts up or down under negative or positive bias.

Figure 5.2 shows the illuminated current-voltage characteristics under negative substrate bias (V_{sub}) varying from 0 V to −3 V with −0.1 V/step. Short-circuit current was enhanced at small negative bias around V_{sub} ~ 0.3 V, however, a kink like characteristic was observed which degrades the fill factor. The origin of this kink like
behavior will be discussed later. On the other hand, open-circuit voltage slightly increased till saturate around 560 mV.

Figure 5.3 shows illuminated current-voltage characteristics under positive substrate bias (V_{sub}) varying from 0 V to 3 V with +0.1 V/step. Current abruptly decreased while the open-circuit voltage first slightly increased and decreased as applying larger voltage. Short-circuit current and open-circuit current under against substrate bias are summarized in Figure 5.4.

![Diagram of solar cell and band diagram](image)

Figure 5.1 Evaluation method for effect of surface potential control on photovoltaic characteristics using substrate bias. (a) Bottom surface potential of silicon nanowire solar cells shifts as the substrate bias applied. (b) Changes of band diagram in the nanowire under substrate bias.
Figure 5.2 Illuminated current-voltage characteristics under negative substrate bias (V_{sub}) varying from 0 V to −3 V with −0.1 V/step. Short-circuit current was enhanced at small negative bias around $V_{\text{sub}} \sim 0.3$ V, however, a kink like characteristic was observed which degrades the fill factor. Open-circuit voltage slightly increased till saturate around 560 mV.
Figure 5.3 Illuminated current-voltage characteristics under positive substrate bias (V_{sub}) varying from 0 V to 3 V with +0.1 V/step. Current abruptly decreased while the open-circuit voltage slightly increased.
Effects of Surface Properties

Figure 5.4 Summary of changes in short-circuit current and open-circuit voltage of a silicon nanowire solar cell under substrate bias varying from -3 V to 3 V. Negative biased, i.e. positive shifted surface potential, might be an effective approach to improve the current-voltage characteristics.
5.2 Demonstration of Surface Potential Control with Thin Al\textsubscript{2}O\textsubscript{3} Layer

Figure 5.5 shows a schematic illustration of surface passivation with thin Al\textsubscript{2}O\textsubscript{3} layer. The Al\textsubscript{2}O\textsubscript{3} layer was deposited by using atomic-layer-deposition (ALD) method with varying the thickness from 1 nm to 2.5 nm. The Al\textsubscript{2}O\textsubscript{3} layer contains a large amount of negatively charged defects (fixed charges). This fixed charges induce field-effects at surface of silicon nanowires just like the surface potential control with negative substrate bias as shown in Figure 5.2. Figure 5.6 shows an example of changes in current-voltage characteristics under deposition of thin Al\textsubscript{2}O\textsubscript{3} layer on the surface of silicon nanowires. Short-circuit current decreased abruptly to the alf value of non-passivated conditions while the open-circuit slightly increased. Figure 5.7 shows a summary of changes in short-circuit current.

![Diagram of surface passivation with thin Al\textsubscript{2}O\textsubscript{3} layer](image)

Figure 5.5 Schematic illustration of surface passivation with thin Al\textsubscript{2}O\textsubscript{3} layer using atomic-layer-deposition method. Al\textsubscript{2}O\textsubscript{3} layer contains negative fixed charges which enable surface potential shift to the negative as explained in Figure 5.2.
Figure 5.6 Changes in current-voltage characteristics under deposition of thin Al₂O₃ layer on the surface of silicon nanowires. The short-circuit current decreased abruptly while the open-circuit voltage slightly increased.
5.3 Discussions

5.3.1 Effects of Bottom Surface Potential Control on PV Characteristics

Figure 5.8 shows schematic illustration of a model for current-voltage characteristics at short-circuit condition under negative substrate bias. As described previously, the negative bias shifts the conduction band and valence band of undoped region. As a result, the electric field of longitudinal direction in the depletion region enhance for small bias, and showed showed the peak short-circuit current. However, when applying larger negative bias to the substrate, both the conduction and valence band keep shifting upward and hole trapping inside the depletion region occur once the...
Effects of Surface Properties

valence band exceed the Fermi-level. This accumulated region suppress the hole current like a well so that the current abruptly decrease and saturate about half of the peak current. This result indicate that the saturated current at voltage $V_{\text{sub}} > -1 \text{ V}$ corresponds to the electron current.

The increase in open-circuit voltage is due to the accumulation at the end of p^+ region. This accumulated region widen the quasi-Fermi level of p^+ region, which result in the increase of open-circuit voltage.

The current-voltage characteristics under negative bias, as shown in Figure 5.8 showed left hand (negative direction) shift. This behavior can be understood as the effect of anode voltage. A forward bias to the anode shifts the p^+ region downward, resulting in change in substrate voltage when the accumulation of depletion region occurs.

Figure 5.9 shows the same model for positive biased conditions. For positive bias, the undoped region shift downward and trapping of electrons occur just as symmetrical behavior of negative biased case. Therefore, the saturated current at large positive V_{sub} correspond to the hole current. This hole current also saturate just around half of the peak current. This fact enhances validity of this model.

However, due to the effect of potential well, the fill factor of current-voltage characteristics strongly influenced by the fluctuation of surface potential. Figure 5.10 shows a compare of changes in short-circuit current and the fill factor. Short-circuit current shows a peak at small negative bias, however, the fill factor drops abruptly with applying negative bias. In order to achieve efficient surface passivation, the suppression of potential well with highly doped anode and cathode region, and precisely controlled surface potential shift must be both achieved.
Figure 5.8 Schematic illustration of a model for current-voltage characteristics at short-circuit condition under negative substrate bias. The hole accumulated region in the depletion region due to the upward shift of valence band suppress the hole current. Increase in open-circuit voltage is due to the electron accumulation at the p^+ region end.
Figure 5.9 Schematic illustration of a model for current-voltage characteristics at short-circuit condition under positive substrate bias. The electron accumulated region in the depletion region due to the downward shift of conduction band suppress the electron current. Increase in open-circuit voltage is due to the hole accumulation at the n^+ region end.
Effects of Surface Properties

5.3.2 Effects of Surface Passivation with Thin Al₂O₃ Layer

Figure 5.11 concludes the effect of surface passivation with thin Al₂O₃ layer used in this work. As shown in the figure, the thermal oxide layer contains positive charges and the Al₂O₃ layer contains negative charges which shifts the surface potential negative and positive, respectively. The optimum shifts in surface potential must be achieved by controlling the amount of total fixed charges by taking the balanced thicknesses between different materials with reverse polarity.
Figure 5.11 A summary of expected changes in flatband voltage with surface passivation of thermal oxide and Al₂O₃ layer. The optimum position of surface potential exists in limited conditions.
5.4 Conclusions for This Chapter

In this chapter, the effects of surface potential control on silicon nanowire solar cell was discussed. From the measurement using substrate bias, the sensitiveness of silicon nanowire solar cells to the change of surface potential are proved to be extreme. The current-voltage characteristics of nanowire solar cells can be modulated by controlling the surface potential, however, there are quite small window for optimize the performance with surface passivation. In order to enhance the performance, precise control of surface potential and position of the nanowires are necessary.
References

6 Conclusions

In this thesis, the effects of interface states on silicon nanowire solar cells and importance of surface potential controlling for enhancement of solar cell performance are experimentally studied and proved.

From the measurement of interface states density by adopting charge pumping method to gated silicon nanowire diodes, extremely high density of interface states exist at the rounded corners of silicon nanowires. The instability of hydrogen termination of rounded corners were also examined by adopting electrical stress to the thermal oxide interface with gated diodes followed by charge pumping measurement. From this viewpoint, management and prevent of the surface rounding is necessary for reduction of interface states, i.e. surface recombination, and improvement of efficiency of silicon nanowire solar cells.

The effects of interface states on silicon nanowire solar cells are experimentally investigated by changing the nanowire cross-section and length. From the measurement with different cross-section nanowires, the effect of high interface state density at sidewalls and rounded corners on solar cell performance will be obvious in small nanowires. Also it was shown that the interface states affect the optimum depletion region length of $p-i-n$ solar cell structures. The optimizing of depletion region length strongly depends on interface state density at surface passivation interfaces.

In order to suppress the effect of interface states on solar cell performances, we proposed surface potential controlling based surface passivation technique. From the experiment of current measurement under bottom surface potential controlling with substrate bias, the sensitiveness of nanowire solar cells to the surface potential was
Conclusions

clearly observed. Since the surface passivation of nanowire solar cell must take into account both n^+ region and p^+ region, the optimized surface potential for each of the position of the nanowires exists for the improvement of efficiency.
Presentations

International Conference (first author)

Domestic Conferences (first author)

Acknowledgements

I would like to express my deep gratitude first and foremost to Prof. Hiroshi Iwai of Tokyo Institute of Technology for his consistent, always kind and to the point guidance as my adviser on this thesis.

I am also grateful to A. Prof. Kuniyuki Kakushima, Prof. Kazuo Tsusui, Prof. Hitoshi Wakabayashi, Prof. Yoshinori Kataoka, Prof. Akira Nishiyama, Prof. Nobuyuki Sugii, and Prof. Kenji Natori, for their invaluable guidance and help throughout my research.

I truly appreciate all the colleagues in Prof. Iwai’s laboratory, for fruitful discussions, kind hospitality and friendships. I am also grateful to Dr. Yan Wu and Dr. Dariush Hassan Zadeh for their assistance with the experiments and invaluable advices on my research.

I would also like to thank Prof. Iwai’s secretaries Ms. Akiko Matsumoto and Masako Nishizawa for their kind support and help with filling and handling in numerous and various documents throughout my days in master student years.

Finally, I would like to express my deepest gratitude to my family Naoki, Naoko, and Takuya for their continuous and unconditional support, encouragement, and help, as I am indebted all my accomplishments to them.