Introduction

Issues on Device Scaling

CMOS devices have been scaled down, but that result in the following some issues.

- Some issues of Scaling: - Increasing of power consumption
 - Short channel effect & leak current
 - Increasing of parasitic resistance
 - Limit of processing

Parasitic Resistance of Device

Parasitic resistance become dominantly percentage of the total resistance [1].

Especially, in the case of NMOS, silicide and extension have a majority.

It need that reduction of channel’s damage and decrease of silicide’s resistivity.

Purpose

This study focused on parasitic resistance and set out to the following:

- Minimizing damage for channel
 - Reduction of roughness at interface and Ni diffusion
- Process of realizing high quality thin Ni silicide films
 - Reduction of resistivity of silicide film

Experimental Procedures

Minimizing Damage for Channel

- p-Si (100) substrate (2 cm x 2 cm)
 - SPM and 1% HF cleaning
 - Deposition by RF sputtering in Ar
 - Ni (3 nm) or stacked Si/Ni (8 sets)
 - RTA in F.G. for 30 min. @ 500 °C
 - SIMS

Process of Realizing High Quality Thin Ni Silicide Films

- n-Si (100) substrate
 - SPM and 1% HF cleaning
 - Deposition by RF sputtering in Ar or Kr
 - NiSi₂ formed by Kr sputtering was compared to that formed by Ar sputtering.

Results & Discussions

Minimizing Damage for Channel

Compared NiSi₂ by only Ni (3 nm-thick) layer on p-Si to stacked NiSi₂ by Si/Ni (8 sets) multi-stack on p-Si.

Ni diffusion could be suppressed by the Ni silicide formed stacked Si/Ni.

Process of Realizing High Quality Thin Ni Silicide Films

It reported that it is difficult for Kr gas to entrap into the sputtered film than Ar gas [2].

So, in this study, Ar gas was changed with Kr gas and the influence investigated.

Stacked NiSi₂ formed by Kr sputtering was compared to that formed by Ar sputtering.

The resistivity of stacked NiSi₂ by Kr decrease than that by Ar at low temperature region.

The value of resistivity was equivalent to bulk one, which was about 34–50 μΩ-cm (that is illustrated by the green line in upper right figure and by the green shaded area in lower right figure).

Conclusion

Minimizing damage for channel and process of getting low resistivity film was investigated.

- Ni diffusion could be suppressed by the Ni silicide formed stacked Si/Ni and channel damage was reduced.
- By changing sputtering gas with Kr from Ar, resistivity of bulk NiSi₂ was obtained. It was considered that Kr gas entrapped into the film was lower than Ar.

Reference
