Influence of Band Discontinuities at Source-Channel contact in Tunnel FET Performance

Yan Wu^{1,3}, H. Hasegawa¹, K. Kakushima², K. Ohmori⁴, T. Watanabe⁵, H. Wakabayashi²,

K. Tsutsui², A. Nishiyama², N. Sugii², Y. Kataoka¹, K. Natori¹, K. Yamada⁴ and H. Iwai¹

¹Frontier Research Center, Tokyo Institute of Technology

²Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology,

4259 Nagatsua, Midori-ku, Yokohama 226-8502, Japan

³Honors Graduate Program for Nanotech/Sciences, University of Tsukuba,

⁴Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

⁵Institute for Nanoscience and Nanotechnology, Waseda University, Shinjuku, Tokyo 169-8555, Japan

2 University of TSUKUBA, 1-1-1, Tenodai, Tsukuba, Ibaraki, 305-8573, Japan

Tel: +81-45-924-5847, Fax: +81-45-924-5846, E-mail:yan.w.ab@m.titech.ac.jp

Introduction

Upon further device size scaling, transistors with steep subthreshold slope have been focused as low standby power devices for next generation [1]. Among variety of steep subthreshold devices, including feedback FET [2], impact-ionization FET [3] and nano-electro mechanical FET [4], tunnel FETs (TFET) have been considered to have high potentials to achieve a large I_{ON} - I_{OFF} ratio over a small gate voltage swing, owing to the elimination of high-energy tail presented in the Fermi-Dirac distribution of the valence band electrons in the source region [5]. As an operation TFET is based on band to band tunneling from valence band of the source region $(E_{V,source})$ to conduction band of the channel $(E_{C, channel})$, the tunneling probability can be determined by a potential barrier with triangular shape as shown in Fig. 1 [6]; a tunneling barrier of $(E_{C,channel} - E_{V,source})$ and tunneling distance which is determined by gate bias and channel concentration(N_d). Therefore, band discontinuities at source and channel interface are the key to improve the performance of TFET. In this study, we investigate the influence of valence band discontinuity (ΔE_V) at source and channel interface on device performance of TFET by numerical simulations.

Simulated model

SILVACO TCAT tool ATLAS with non-local tunneling model was used for the simulation. An *n*-type SOI layer (E_g =1.12eV, N_d =1×10¹⁷ cm⁻³) with a thickness of 10 nm and a channel length of 100 nm were used. Gate oxide with an equivalent oxide thickness of 0.3 nm was adopted. ΔE_V between the p⁺-source and channel was varied from 0 (homojunction) to 0.6 eV. The carrier distribution of source material property sited Si carrier. The band diagrams are shown in Fig.1.

Influence of valence band discontinuity

Figure 2 shows I_d - V_g and subthreshold swing (SS)

characteristics of TFET with different values of $\Delta E_{\rm V}$. One can observe higher $I_{\rm ON}$ as well as smaller SS with larger $\Delta E_{\rm V}$. The minimum SS of 14 mV/dec. was obtained with $\Delta E_{\rm V}$ of 0.6 eV. Transconductance (g_m) also increased with larger $\Delta E_{\rm V}$ as shown in Fig. 2(c). Threshold voltage, V_{th} , defined as Vg at $I_{\rm d}$ =10⁸A/µm, decreased gradually with larger $\Delta E_{\rm V}$, due to reduced tunneling distance, as shown in Fig. 3(a). Large increase in $I_{\rm ON}$, defined as V_g = V_{th} +0.7V, is due to lower energy barrier, as shown in Fig. 3(b). On the other hand, $I_{\rm OFF}$, defined as V_g = V_{th} -0.3V, showed no dependency on $\Delta E_{\rm V}$, as shown in Fig. 3(c), which lead to the large $I_{\rm ON}/I_{\rm OFF}$ ratio.

Considering potential semiconductors for source from the viewpoint of $\Delta E_{\rm V}$, as summarized in Fig. 4, Mg₂Si (E_g =0.75 eV) source can be a candidate for *n*-TFETs with Si channel. In the same way, β -FeSi₂ (E_g =0.85eV) can be a candidate for *p*-TFETs.

Conclusions

We have investigated the influence of valence band discontinuity at source and channel interface on device performance of TFET by numerical simulations. A steep slope with high I_{ON} can be both achieved with larger discontinuity, owing to reduced distance and lower energy barrier for tunneling.

Acknowledgment

The author would like to thank Honor's program of University of Tsukuba. The author would like to thank SILVACO JAPAN co.'s technical support.

References

[1] A Tura, et al., IEEE Trans. Electron Dev., Vol. 57, pp. 1362 (2010).

[2] A. Paddilla, et al., IEDM Tech. Dig., pp. 1 (2008).

[3] K. Gopalakrishnan, et al., IEEE Trans. Electron Devices, Vol. 52, pp. 69 (2005).

[4] H. Kam, et al., IEDM Tech. Dig., pp. 463 (2005).

[5] S. Mookerjea, et al., IEDM Tech. Dig., pp. 949 (2009).

[6] D. K. Mohata, et al., IEDM Tech. Dig., p. 781 (2011).

[7] Semiconductor - Basic Data 2nd Edition , O.Madelung, Springer

Fig.2 (a) Drain current, (b) trans conductance, and (c) subthreshold swing as a function of gate voltage for each valence band offset in TFET

[8] M. Baleva et al., ECSTransaction 8 ,1 (2007) p.151[9] T. Suemasu, et al., JJAP 45 (2006) L519

Fig. 3 (a) Threshold voltage, (b) Ion, and (c) Ioff as a function of Ev.

Fig. 4 Band alignments of various semiconductors and silicides.[7-9]