Effect of Thin Si Insertion at Metal Gate/High-k Interface on Electrical Characteristics of MOS Device with La₂O₃

D. Kitayama¹, T. Koyanagi¹, K. Kakushima², P. Ahmet¹, K. Tsutsui², A. Nishiyama², N. Sugii², K. Natori¹, T. Hattori¹, H. Iwai¹

¹Frontier Resarch Center, Tokyo Institute of Technology ²Interdisciplinary Graduate School of Science and Engineering

Introduction of high-k Gate Dielectrics

Hf-based oxides are currently

SiO₂-IL would eventually limit the scaling

high-k/Si direct contact without SiO₂-IL is necessary

Reports on Direct Contact of HfO₂/Si

K. Choi, et al., VLSI symp. Tech. p.138 (2009).

T. Ando, et al., IEDM, Tech. p.423 (2009).

Selection of metal gate material is the key factor to achieve direct HfO₂/Si structure

Direct Contact of High-k/Si with La₂O₃

Advantages of La₂O₃

- High permittivity ($_r=23.4$)
- Wide band-gap (E_g =5.6eV)
- Direct contact with Si by forming La-silicate 500 °C, 30 min

Effective mobility (cm²/Vs) 400 Peak µ_{eff} μ_{eff} @ 0.8MV/cm $= 312 \text{ cm}^{2}/\text{Vs}$ = 280 cm²/Vs 300 200 L/W=10µm/54µm 100 EOT=1.7nm N₂ PDA 300 °C 10min 0 0.2 0.4 0.6 0.8 1.0 0 Effective electric field (MV/cm) J. A. Ng et al.: IEICE Electronics Express 3 (2006) 316

Fairly nice interfacial property with a peak μ_{eff} of over 300 cm²/Vs has been reported.

K. Kakushima, et. al.: IWDTF(2008)

La₂O₃ is expected to be one of the gate dielectrics for next generation devices

Issues for EOT Scaling

Remote charge scattering induced by fixed charges might degrade mobility.

Si Insertion Technique

Experimental Procedure

Electrical characteristics of capacitors

C-V Characteristics

Smaller EOT is obtained with Si inserted capacitor

Annealing Temperature Dependence of EOT

Oxygen diffusion from gate metal might be reduced by La-silicate at metal/high-k interface

V_{fb} Shift Induced by Si Insertion

V_{fb} shift indicates reduction of positive fixed charges with Si insertion.

Electrical characteristics of transistors

Electrical Characteristics of FETs

The V_{th} shift and suppression of EOT increase is consistent with capacitors.

Mobility Comparison

w/o Si

Effective mobility is improved with Si inserted FETs.

Mobility at Low Electric Field

Fixed charges such as oxygen vacancies or metal induced defects are reduced by forming La-silicate at metal/high-k interface.

Mobility at High Electric Field

La rich-silicate is formed at La₂O₃/Si interface with Si inserted FETs.

Leakage Current

A fairly nice J_g of ~10³ times smaller with respect to the ITRS requirement is achieved.

Conclusions

The effect of Si insertion at metal/La₂O₃ interface has been investigated.

- Smaller EOT is obtained with Si insertion possibly owing to the reduction of oxygen diffusion.
- The negative V_{fb} and V_{th} shift has been suppressed by the reduction of positive fixed charges with Si insertion.
- Mobility improvement at low electric field might be due to suppression of remote charge scattering induced by oxygen vacancies or metal induced defects.
- Mobility improvement at high electric field might be due to formation of Lasilicate with high permittivity at high-k/Si interface.

Si insertion technique is effective to improve FET property with EOT of sub 0.6 nm.

This work has been supported by NEDO.

Thank you for your attention