

節電社会を牽引する新たなナノSi技術 ---- ナノCMOSの進化 ----

東京工業大学

フロンティア研究機構 (兼)大学院総合理工学研究科

岩井 洋

自己紹介

1972年4月 東京大学工学部電子工学科卒業

卒論:核融合:重水素プラズマ発生用Qスイッチレーザの開発

1973年4月~ 東京芝浦電気(株)総合研究所 集積回路研究所

NMOSLSI技術開発、1kbit SRAM、64kbit DRAM、1Mbit SRAM開発、 高速バイポーラ技術、BiCMOS技術開発、RFCMOS技術開発 Sub-50nmCMOS技術開発、等々

1983年3月~84年11月 スタンフォード大学 集積回路研究所

1999年3月まで (株)東芝半導体事業本部マイクロエレクトロニクス技術研究所

1999年4月~ 東京工業大学 大学院総合理工学研究科

2011年5月現在 東京工業大学 フロンティア研究機構 (兼)大学院総合理工学研究科

Nano-CMOS, high-k, Si-nanowire, III-V MOSFET, ReRAM、等々

学会∶IEEE, President, Electron Devices Society Director, Div I Member, Board

余談ですが…

75 mm, 100 mm, 50 mm

節電に向けて集積回路の果たす役割

世界最初の電算機 Eniac: 多くの真空管で形成 1946年 重厚長大, 大消費電力, 真空管のフィラメントの寿命が短時間 真空管:17,468本の、抵抗器:70,000個の、コンデンサ:10,000個 幅24m、高さ2.5m、奥行き0.9m、総重量30トン、消費電力:150kW

最近のSDカード

- 128GB = 128Gbite = 128G X 8bit = 1024Gbit = 1.024T(Tera)bit
 - (1bit: 最小の情報 "0" 又は "1")
 - 1T = 10¹² = 1兆個

世界人口:60億人 脳細胞(人間):100~1000億個 銀河系 恒星:1000億個

2.4cm(幅) X 3.2cm(長さ) X 0.21cm(厚さ) 体積:1.6cm³ 重さ:2g

電圧:2.7 - 3.6V

昔の真空管 1個: 5cm X 5cm X 10cm、100g、100W

1Tbit = 1兆個 = 1万個 X1万個 X 1万個

体積 = 0.5km X 0.5km X 1km = 0.25 km³ = 0.25X10¹²cm³

重さ = 0.1 kgX10¹² = 0.1X10⁹ton = 1億ton

消費電力 = 0.1kWX10¹²=500億kW

東電供給電力 5500万kW

集積回路:トランジスタの微細化は節電に有効

集積回路の電力(P)はトランジスタの キャパシタンス(C)の充放電で決まる。

電源電圧をVとすると:

P= CV²/2 微細化によって、C、Vとも減少

トランジスタ当たりの消費電力激減

東電管内での 全PCの消費電力:100万kW 全データセンターでの消費電力:数10万kW ちなみに、スーパーコンピュータ:Cray XT6(本体):7000kW₁₄

集積回路: トランジスタの微細化は高性能化にも有効

トランジスタのスイッチング時間(τ)は キャパシタンス(C)の充放電で決まる。 電源電圧をV.電流をIとすると: Q:キャパシタに $\tau = Q/I = CV/I$ 蓄えられた電荷 微細化によって、C、Vとも減少 トランジスタのて激減

一方、微細化によってトランジスタ数激増
 → 多数の並列演算が可能 → 演算速度の向上

微細化が集積回路発展の駆動力

	1900	1950	1960	1970	2000
	真空管	Transistor	IC	LSI	ULSI
寸法 (ゲート長、 フィラメント)	10 cm	cm	mm	10 µm	100 nm
	0 10⁻¹m	10 ⁻² m	10 ⁻³ m	10 ⁻⁵ m	10 ⁻⁷ m

過去100年足らずの間に百万分の一に縮小

石器時代から人類は数々の道具を発明して来たが、このような急激な微細化は、人類史の中で空前絶後の出来事

微細化によりトランジスタ当たりのコストも激減

- 128GB SDカード 4万円 → 1bit 当たり4X10⁻⁸円 → 4沙円
- → 40 n円→ これが本当のナノテク??
- -1 -2, -3, -4, -5, -6, -7 -8, -9,-10,-11,-12 分, 厘, 毛, 糸, 惚, 微, 繊,沙, 塵, 埃, 緲, 漠 -20 -21, -22,-23, 虚, 空, 清, 浄
 - -9: nano, -12:pico, -15: femoto, -18: atto, -21: zept, -24: yocto
- nm =塵米 (中国は別)

節電に向けて集積回路が果たすもう一つ の役割

言うまでもないが

集積回路は、

今や我々人類社会に必要不可欠なものとなっている

<u>我々の社会はCMOS集積回路の補助無してはやっていけない</u>

家庭、オフィス,生産,金融,通信,運輸,医療,教育,娯楽等

<u>仮に、CMOS集積回路が動かなければ</u>

銀行のコンピュータが停止 世界経済が直ちに停止 携帯電話を含め世界の通信が停止 情報が全く入らない状況

原発の制御も当然不可能

今後、少子高齢化社会において、人間の知的作業を代行・補助する機器が重要で、このためにも集積回路が重要

省エネの為には、集積回路を制御素子として、ありとあら ゆる所に用いて

 あらゆるシステムの高効率化・省エネ化 自動車エンジン制御 都市交通網制御 スマートグリッド(送電制御) 製造マシン

2. 電力供給能力状況に対応した、システム・機器の 省エネモード動作化、一時停止

エアコン、家電

各種電子デバイスの省エネに対する重要性

集積回路の省エネへの貢献(まとめ)

2通りの貢献:いづれも微細化が鍵

1. Green by IC (IC: Integrated Circuit)

集積回路を用いたシステムの高効率化・省エネ化

集積回路の低消費電力化も勿論であるが、 更なる高性能化も重要

2. Green of IC

集積回路自身の低消費電力化

PC, データセンター,携帯電話など

集積回路微細化の歴史

2006年はその100周年 この100年前後にされた発明 の中でも最も重要なもの 1996年 コンピュータ50周年 1997年 電子発見 100周年 トランジスタ50周年 2005年 物理年 アインシュタイン

Lee De Forest (1873-1961)

Lee De Forestの4人の妻

1906 Lucille Sheardown
1907 Nora Blatch
1912 Mary Mayo, singer
1930 Marie Mosquini, silent film actress

Mary

Marie

J. E. LILIENFELD

DEVICES FOR CONTROLLED ELECTRIC CURRENT

Filed March 28, 1928

最初のトランジスタ (MOSFETのアイデア)

J.E.LILIENFELD

キャパシタ構造(基板に楔入り)

28

MOSFET (Metal Oxide Semiconductor Field Effect Transistor)

断面図

回路図

'MOS': 材料に由来

'FET': 動作原理に由来

NMOSの例

MOSFET動作原理

Liliendfeldの1928年のMOSFETタイプの トランジスタの提案以来多くの研究者が MOSFETの実現を目指すも30年以上に 亘って誰も成功しなかった。

ベル研のShockleyすら!

しかし、Ge半導体の表面の特性評価中に電気信号の増幅作用を発見 MOSFETとは全〈異なるトランジスタ:バイポーラトランジスタ 1950-70年代までは主流のトランジスタ

3人は1956年に/ーベル賞受賞

<u>1947</u>

Bipolar using Ge

33

<u>1958: 最初の集積回路</u>

2つのGeバイポーラトランジスタを ワイヤで配線(空中配線)

Jack S. Kilby

Texas Instruments

2001年 ノーベル賞

D. Kahng and M. Atalla (ベル研) Siを半導体として選択

最初のMOSFET

<u>1970年代初めからMOS集積回路が本格化</u>

DRAM Intel 1103

MPU Intel 4004

Si集積回路は毎年のように集積度を上げてきた

年代	名称	トランジスタ数

- 1960年代 IC (Integrated Circuits) ~ 10
- 1970年代 LSI (Large Scale Integrated Circuit) ~1,000
- 1980年代 VLSI (Very Large Scale IC) ~10,000
- 1990年代 ULSI (Ultra Large Scale IC) ~1,000,000
- 2000年代 ?LSI (? Large Scale IC) ~1000,000,000
- これ以降は、10年毎に新たな名前を考え出すことは難しいので、世界で通じる名前は無い

CMOS (Complementary MOS) 回路

1963 C. T. Sah and F. Wanlass (Fairchild)

CMOS回路:低消費電力回路

入力:NMOSとPMOSのゲート共通 出力:NMOSとPMOSのドレイン共通 C. T. Sah

例: CMOS Inverter回路: 電源から接地への貫通電流流れない

集積回路微細化の微細化限界

1970年代から微細化限界の予想

幸いにして皆外れた

予想した 年代	限界	理由
1970年代後半	1μm:	SCE(短チャネル効果)
1980年代前半	0.5µm:	S/D resistance
1980年代前半	0.25µm:	Direct-tunneling of gate SiO ₂
1980年代後半	0.1µm:	'0.1µm brick wall'(various)
2000 年頃	50nm:	'Red brick wall' (various)

VLSIの教科書 1979年発行

43

VLSI textbook

Finally, there appears to be a fundamental limit ¹⁰ of approximately quarter micron channel length, where certain physical effects such as the tunneling through the gate oxide begin to make the devices of smaller dimension unworkable.

直接トンネル効果

Drain current: Id \propto 1/Gate length (Lg) Lg \rightarrow small,

Then, $Ig \rightarrow small$, $Id \rightarrow large$, Thus, $Ig/Id \rightarrow very small$

Transistor Scaling Continues

Qi Xinag, ECS 2004, AMD 49

微細化はどこまで行くか?

微細化の進行 Mooreの法則:1世代で線幅0.7倍、面積半分、集積度2倍
1970年:10µm → 8µm → 6µm → 4µm → 3µm → 2µm →
1.2mm → 0.8µm → 0.5µm → 0.35µm → 0.25µm → 180nm
→ 130nm → 90nm → 65nm → 45nm → 32nm:現在 2011年

1970 → 2011: 40年で17世代、線幅 1/300、面積 1/100,000に メモリ: 1kbit DRAM → 64Gbit Flash、 マイクロプロセッサクロック周波数: 75kHZ → 3GHz 今後どこまで行くか?

2世代先までは集積化プロセス確立に近い 4世代先まではMOSFET性能検証済み

 $32nm(現在) \rightarrow 22nm \rightarrow 16nm \rightarrow 11.5 nm \rightarrow 8nm \rightarrow$ 5.5nm? \rightarrow 4nm? \rightarrow 3nm? \rightarrow - - - \rightarrow 0.3nm(究極の限界)

<u>究極の限界:原子1列(Si結晶の原子の間隔=0.3 nm)</u>

究極の限界まで後14世代

しかし、その前に限界が!

微細化を律則する要因

- 1) MOSETがオフしなくなる
- 2) MOSETの性能が却って悪化
- 3) 配線の微細化が困難
- 4) リソグラフィーが困難
- 5) 集積回路の発熱の増大
- 6) MOSETの特性バラつきの増大
- 7) 欠陥などによる歩留まりや信頼性の劣化
- 8) 開発や製造コストの増大
- 9) 膨大な数のMOSFETを回路設計で取扱い不能

9)膨大な数のMOSFETを回路設計で取扱い不能? 解決手段

Multi-coreによる階層設計効率化

E-CAD toolの進展

8) 開発や製造コストの増大?

最先端のファブをつくるのに数1000億円

しかし、 集積回路は巨大マーケット

今後も年間数%で成長し、高い利益が見込める

巨額の投資をして、開発先行すれば独占的巨額の利益 開発で遅れれば、脱落の可能性

微細化で先行できる会社も少なくなってきた

インテル(MU)、サムソン(フラッシュ、DRAM)、東芝(フラッシュ) TSMC(ファンドリ)が代表格

その他、エルピーダ、ハイニクス、グローバル、STマイクロなど これをSMIC(中国)が追う

他の会社は22nm以降はファブレスやファブライトでTSMCなどの ファンドリに委託予定

By SMIC @CSTIC 2011, Shanghai

By SMIC @CSTIC 2011, Shanghai

By SMIC @CSTIC 2011, Shanghai

7) 欠陥などによる歩留まりや信頼性の劣化6) MOSETの特性バラつきの増大

解決手段

無限に近いトランジスタ数を使える

回路・システムのレベルで救済

誤り訂正符号、冗長回路、多数決論理 トランジスタやブロックの選択や置き換え

将来は寧ろトランジスタのばらつきの個性を 活かした設計の方向に

5) 集積回路の発熱の増大

解決手段

冷却技術の開発

クロック周波数増大の抑制

冷却が可能な範囲、冷却コストが十分ペイする範囲で 性能の向上を図る

2001年からの単純外挿 (LSIの単位面積当たりの熱発生量)

- 2002 10W/cm² Hot plate
- **2006 100W/cm²** Surface of nuclear reactor
- 2010 1000W/cm² rocket nozzle
- **2016 10000W/cm² Sun surface**

P. P. Gelsinger, ISSCC 2001

4)リソグラ	ラフィーが困	難					
解決手段							
22~16	nm世代						
波長193nmのArF + 超解像技術							
11nm ~	世代			EUV露光装置			
波長1	3.5nmのEL	JV + (超解 ⁻	像技術)	1台80億円			
リソグラフィー	の波長と光源			EUV			
436nm →	365nm →	248nm →	193nm →	13.5nm			
Hg g線	Hg i線	KrF Excimer	ArF Excimer	Sn Plasma			
超解像技術:	波長の数分の	つれの線幅を解	像				

近接効果補正,位相シフト、変形照明,二重露光、液浸技術など

The Sub- λ Litho Challenge

Complex designs, shrinking process windows

PROCESS CONTROL: THE INVESTMENT THAT YIELDS

Ref:KLA Tencor

Sub-Wavelength Scaling

Source: Numerical Technologies

3) 配線の微細化限界

解決手段

後数世代で微細化限界に到達するかも?

配線を微細化しない設計 配線の空気分離(配線間容量削減) 更なる多層化? E-CADの更なる最適化)

2) MOSETの性能が却って悪化

微細化により、寄生の抵抗とキャパシタンスが増大するが 解決できそう

1) MOSETがオフしなくなる

最も厳しい問題である

微細化を律則するであろう

5 nm gate length CMOS

トンネルによる限界 ゲート長 3nmあたり

NanoCMOSの進化

High-kゲート絶縁膜技術

(k:比誘電率)
ゲート長を短くする時、ドレインからの空乏層の延びを 抑えないとsubthresholdリーク電流が更に増大

これを抑制するにはゲート絶縁膜を薄くして、ゲート電圧による チャネル電位の制御をよくする必要がある。

- 1.2nm physical SiO2 in production (90nm logic node)
- 0.8nm physical SiO2 in research transistors

By Robert Chau, IWGI 2003₇₄

Choice of High-k elements for oxide

	Candidates												(a	Gas at 10	or I)00	iqui K	HfO ₂ based dielectrics are selected as the	
н		Unstable at Si interface Si + MO_X M + Si O_2 Si + MO_X MSi _x + Si O_2										Ra	adio	act	ive	first generation materials, because of		
Li	Be										В	С	N	0	F	Ne	their merit in 1) band-offset, 2) dialoctric constant	
Na	Mg		Si	+ N	10 _x	Μ	+ N	ISi _x	O _Y			AI	Si	Ρ	S	Cl	Ar	3) thermal stability
К	Ca	Sc	Ti	v	Cr	Mn	Fc	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
Rh	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rb	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe	La ₂ O ₃ based dielectrics are
Cs	Ва		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn	thought to be the next generation materials,
Fr	Ra		Rf	На	Sg	Ns	Hs	Mt										which may not need a thicker interfacial
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		layer

Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

R. Hauser, IEDM Short Course, 1999 Hubbard and Schlom, J Mater Res 11 2757 (1996)

Conduction band offset vs. Dielectric Constant

XPS measurement by Prof. T. Hattori, INFOS 2003

High-k gate insulator MOSFETs for Intel: EOT=1nm

EOT: Equivalent Oxide Thickness

Cluster tool for high-k thin film deposition

Reports on direct contact of high-k/Si

EOT=0.37nm(世界レコード) La2O3

 $0.48 \rightarrow 0.37$ nm Increase of Id at 30%

Si nanowire FET 技術

ドレインからの空乏層の延びを抑制する為には、チャネルを囲むように ゲート電極を設けるのが効果的

この構造でゲート絶縁膜の薄膜化を2、3世代後戻りできる。

Because of off-leakage control,

Planar \rightarrow Fin \rightarrow Nanowire

Nanowire FET

Increase the Number of quantum channels

Device fabrication

3D-stacked Si NWs with Hi-k/MG Cross-section

Top view

Wire direction : <110> 50 NWs in parallel 3 levels vertically-stacked Total array of 150 wires EOT ~2.6 nm **NWs**

SiNW Band structure calculation

Cross section of Si NW

First principal calculation,

D=1.96nm D=1.94nm D=1.93nm [001] [011] [111]

Atomic models of a Si quantum dot and Si nanowires

SiNW Band compact model

Landauer Formalism for Ballistic FET

IV Characteristics of Ballistic SiNW FET

Small temperature dependency 35µA/wire for 4 quantum channels

Model of Carrier Scattering

Linear Potential Approx. : Electric Field E

Résumé of the Compact Model

$$I = \frac{q}{\pi \hbar} \sum_{i} g_{i} \int \left[f(\varepsilon, \mu_{s}) - f(\varepsilon, \mu_{D}) \right] T_{i} d\varepsilon \qquad C_{G} = \frac{2\pi\varepsilon_{ox}}{\ln\left\{\frac{\sqrt{2r + t_{ox}} + \sqrt{t_{ox}}}{\sqrt{2r + t_{ox}} - \sqrt{t_{ox}}}\right\}}.$$
Planar Gate

$$(V_{G} - V_{i}) - \alpha \frac{\mu_{S} - \mu_{0}}{q} = \frac{|Q_{f} + Q_{b}|}{C_{G}}. \qquad \mu_{S} - \mu_{D} = qV_{D} \qquad C_{G} = \frac{2\pi\varepsilon_{ox}}{\ln\left(\frac{r + t_{ox}}{r}\right)}.$$
(Electrostatics requirement)

$$Q_{f} + Q_{b} = \frac{q}{\pi} \sum_{i} g_{i} \left[\int_{-\infty}^{\infty} \frac{dk}{1 + \exp\left\{\frac{\varepsilon_{i}(k) - \mu_{S}}{k_{B}T}\right\}} - \int_{-\infty}^{0} \left\{ \frac{1}{1 + \exp\left\{\frac{\varepsilon_{i}(k) - \mu_{S}}{k_{B}T}\right\}} - \frac{1}{1 + \exp\left\{\frac{\varepsilon_{i}(k) - \mu_{S}}{k_{B}T}\right\}} - \frac{1}{1 + \exp\left\{\frac{\varepsilon_{i}(k) - \mu_{D}}{k_{B}T}\right\}} T_{i}(\varepsilon_{i}(k))dk$$
(Carrier distribution

$$T(\varepsilon) = \frac{\sqrt{2D_0 qE}}{\left(\sqrt{B_0 + D_0} + \sqrt{D_0}\right) qE + \sqrt{2mD_0} B_0 \ln\left(\frac{qEx_0 + \varepsilon}{\varepsilon}\right)}$$

in Subbands)

Unknowns are I_{D} , $(\mu_{S}-\mu_{0})$, $(\mu_{D}-\mu_{0})$, $(Q_{f}+Q_{b})$

I-V_D Characteritics (RT)

SiNW FET Fabrication

Fabricated SiNW FET

Recent results to be presented by ESSDERC 2010 next week in Sevile

Wire cross-section: 20 nm X 10 nm

Bench Mark

Bench Mark

	This work	Ref[11]	Ref[12]	Ref[13]	Ref[14]	Ref[15]	Ref[4]
NW Cross-section (nm)	Rect.	Rect.	Rect.	Cir.	Cir.	Elliptical	Elliptical
NW Size (nm)	10x20	10x20	14	10	10	12	13x20
Lg (nm)	65	25	100	30	8	65	35
EOT or Tox (nm)	3	1.8	1.8	2	4	3	1.5
Vdd (V)	1.0	1.1	1.2	1.0	1.2	1.2	1.0
Ion(uA) per wire	60.1	102	30.3	26.4	37.4	48.4	43.8
Ion(uA/um) by dia.	3117	5010	2170	2640	3740	4030	2592
Ion(uA/um) by cir.	1609	2054	430	841	1191	1283	825
SS (mV/dec.)	70	79	68	71	75	~75	85
DIBL (mV/V)	62	56	15	13	22	40-82	65
Ion/Ioff	~1E6	>1E6	>1E5	~1E6	>1E7	>1E7	~2E5

Ref[11] by Stmicro Lg=25nm,Tox=1.8nm This work Lg=65nm,Tox=3nm
I_{ON}/I_{OFF} Bench mark

S. Kamiyama, IEDM 2009, p. 431 P. Packan, IEDM 2009, p.659

SiナノワイヤFET ☆ 1.2~1.3V Y. Jiang, VLSI 2008, p.34 H.-S. Wong, VLSI 2009, p.92 S. Bangsaruntip, IEDM 2009, p.297

C. Dupre, IEDM 2008, p. 749 S.D.Suk, IEDM 2005, p.735

G.Bidel, VLSI 2009, p.240

Primitive estimation !

Transistor Innovations Enable Technology Cadence

22 nm 3-D Tri-Gate Transistor

The steeper sub-threshold slope can also be used to target a lower threshold voltage, allowing transistors to operate at lower voltage to reduce power and/or improve switching speed

Transistor Gate Delay

22 nm 3-D Tri-Gate transistors can operate at lower voltage with good performance, reducing active power by >50%

22nm Silicon Technology Breakthrough Benefits Broad Range of Intel Architecture Devices

New 22nm 3-D transistors deliver unprecedented performance improvement and power reduction for Intel's product portfolio

- This benefits smallest handhelds to powerful cloud-based servers
- 37% performance increase at low voltage vs. 32nm planar transistors*
- Consumes only half the power at the same performance level as 2-D transistors on 32nm planar chips*

Energy-Efficient Performance Built on Moore's Law

例えば中国大連の例

大連のインテルFab 68 300mm

大連理工大学ICデザイン・テストセンター

大連理工大学ICプロセスプラットフォーム 200mm インテルから44M USD (約40億円)の装置の寄付

121

Current Issues <u>Si Nanowire</u>

Control of wire surface property Source Drain contact Optimization of wire diameter Compact I-V model **III-V & Ge Nanowire** High-k gate insulator Wire formation technique CNT: Growth and integration of CNT Width and Chirality control Chirality determines conduction types: metal or semiconductor **Graphene:**

Graphene formation technique Suppression of off-current

Very small bandgap or no bandgap (semi-metal)

Control of ribbon edge structure which affects bandgap 122

CMOS集積回路とその技術開発は、今後節電社会に おいて重要な役割を果たす

また、その市場は今後も毎年数%の勢いで増加が見 込まれている

Nano CMOS技術の最近の研究開発により、従来の限 界は打破され、今後少なくとも数世代は進化を遂げ ると見られている

アジア諸国(台、韓、シンガポール、中国、インド)と欧 米でNano CMOS技術の研究に再び力を入れ始めて いる

御清聴有難う御座居ました