Remote-surface-roughness scattering-limited electron mobility in ultrathin high-k gate stacked MOSFETs

M. Mamatrishat¹, K. Kakushima², P.Ahmet¹, K.Tsutsui², A. Nishiyama², N. Sugii², K. Natori¹, H. Iwai¹

Tokyo Tech. FRC¹, Tokyo Tech. IGSSE²

Results

Back ground

Mobility degradation is one of the main concerns in ultra-thin high-k gate stacked MOSFETs.

Purpose

Materials and Methods

Model

Conclusion

For CeO_x/La_2O_3 gate dielectric structure, the remote-Coulomb scattering play dominant role when the physical thickness of the La_2O_3 is larger than 2.2nm.

When the interfacial layer too close (the distance is less than 1.7nm) to the channel, the remote surface roughness scattering take dominant role.

Acknowledgment

This work was supported by NEDO. M.M acknowledges financial supports by NEC C&C.

Contacts

E-mail: mamat.m.aa@m.titech.ac.jp

RSR- limited electron mobility extracted by Matthiessen's rule, and the result is compared with simulation result.