III-V MOSFETs for Next Generation

- Fabrication of III-V MOS Capacitors

Edward Y. Chang, Yueh-Chin Lin National Chiao Tung University

Hiroshi Iwai, Kuniyuki Kakushima Tokyo Institute of Technology

Importance of CMOS devices

Tokyo Institute of Technology Iwai Lab.

CMOS device scaling

Advantages of high-k/ III-V integration

	Si	GaAs	In _{0.53} Ga _{0.47} As	In _{0.7} Ga _{0.3} As	InAs
E _g (eV)	1.12	1.42	0.74	0.59	0.35
Bulk e mobility cm ² /V s	1400	8500	12000	20 000	40000
Bulk hole mobility cm ² /V s	450	400	300	300~ 400	500

III-V materials have:

- High electron mobility
- High-low field drift velocity
- Good for low power logic application

Tokyo Institute of Technology Iwai Lab.

Issues in high-k/ III-V technology

1. Redution of interface state density

- ·Selection of high-k material
- Proper surface treatments
- $\cdot \mbox{Optimization}$ in the annealing process
- 2. Reduction of parasitic resistance

·Alloy process, etc..

Selection of high-k material for III-V

- High interface density D_{it}: High D_{it} results in Fermi level pinning, instability, carrier scattering.
- Oxides with high dielectric constant and large band gap are required.

Oxide	Al ₂ O ₃	HfO ₂	La ₂ O ₃	CeO ₂
k	8~11.5	25	30	38
Eg (eV)	6.65	5.7	4.3	3.2

Our collaborative mission

National Chiao Tung University CSD Lab.

- High-k on verious III-V substrates In_xGa_{1-x}As (x=0.53, 0.70, 1.00)

Tokyo Institute of Technology Iwai Lab.

- Verious high-k for In_{0.53}Ga_{0.47}As substrates

 HfO_2 , La_2O_3 , CeO_2 , Pr_6O_{11}

Establish a material selection guidline for future high-k/III-V technology

- Process engineering
- Interface reaction upon process
- Electrical characterization

Tokyo Institute of Technology Iwai Lab.

Content

1. ALD Al₂O₃ on InAs substrarte

- 2. ALD Al₂O₃ on InGaAs substrate
- 3. Surface treatment for La₂O₃/InGaAs

4. Enhanced deposition for HfO₂/InGaAs

1. ALD Al₂O₃ on InAs substrarte

X-ray photoelectron spectroscopy (XPS) analysis $AI_2O_3/InAs$

Multi frequency C-V analysis

- Inversion regime: ΔC (control) > ΔC (sulfide+TMA) > ΔC (HCI+TMA)

Quasi static C-V (QSCV) analysis

C-V simulation with D_{it} profiles

• Using full numerical solution of the Poisson equation:

$$\frac{d^2 V(x)}{dx^2} = -\frac{e(N_d - N_a + p(x) - n(x))}{\varepsilon_s}$$

- N_d and N_a: are the donor and acceptor concentrations in the semiconductor
- n(x) and p(x): are the electron and hole density
- s is the dielectric constant of the semiconductor
- The D_{it} at the InGaAs, InAs/high-k interface was varied, until a good fit to the experimental data was obtained
- Charge quantization effects and non-parabolicity in the conduction band is not included in simulation

Extracted D_{it} profiles

- U-shape profile, very similar to $Al_2O_3/In_{0.53}Ga_{0.47}As$ case (APL 95, 202109)

- Chemical + TMA surface treatments significantly reduce the donor-like traps
- HCl + TMA treated sample shows lower donor like-traps than that of sulfide + TMA treated sample

2. ALD Al₂O₃ on InGaAs substrarte

$Al_2O_3/In_{0.53}Ga_{0.47}As$

X-ray photoelectron spectroscopy (XPS) analysis

(c)	Sulfi	de + 1	MA tre	atment			
(d)	тма	treat	ment, F	PDA: 50	0C in I	N ₂	
(e)	Sulfi	de +	ГMA tre	atment	t, PDA:	500C i	n N ₂
(f)	Sulfic	de + T	MA trea	atment,	, PDA:	500C ir	H ₂

strong effect in reducing native oxides

Tokyo Institute of Technology Iwai Lab.

H₂:

Multi-frequency C-V characterization

 $Al_2O_3/ln_{0.53}Ga_{0.47}As$

True inversion response at high frequency of 1 MHz

 \checkmark

C-V simulation results

$Al_2O_3/In_{0.53}Ga_{0.47}As$

D_{it} extracted by conductance method and simulation

3. Surface treatment for La₂O₃/InGaAs

CV characteristics of La₂O₃/InGaAs MOS capacitor

Novel interface engineering process

Surface Si passivation using a self-assembled monolayer HMDS (Hexamethyldisilazane)

> CH₃ CH₃ CH₃ CH₃-Si-CH₃ CH₃-Si-CH₃ CH₃-Si-CH₃

> > In_{0.53}Ga_{0.47}As InP

> > > HMDS coating

The impact to the CV curves are characterized

Impact of Si monolayer insertion to the CV curves

Less GaO_x foramtion with less frequency disperssion

4. Enhanced deposition for HfO₂/InGaAs

Tokyo Institute of Technology Iwai Lab.

D_{it} distribution with enhanced HfO₂ deposition

Smaller D_{it} with interface HfO₂ deposited at 300 °C

Tokyo Institute of Technology Iwai Lab.

Conclusions

Surface treatment of InAs and InGaAs substrate with TMA is effective in removing the native oxide at the interface

With H_2 annealing, a D_{it} below 2x10¹¹ cm⁻²/eV can be achieved

Si insertion at $La_2O_3/InGaAs$ by self-assembled monolayer can reduce the frequency disperssion at accumulation

Controling the temperature during the deposition is effective to change the interface properties to reduce the D_{it}

