シリコンナノワイヤトランジスタの電気特性の絶縁膜厚依存性

Electrical characteristics of silicon nanowire field-effect transistors as a function of gate oxide thickness

東エ大フロンティア研¹,東工大総理工²,筑波大数理物質³

^O佐藤創志¹, 角嶋邦之², Parhat Ahmet¹,

大毛利健治³,名取研二¹,山田啓作³,岩井洋¹

Frontier Research Center, Tokyo Tech.¹

Interdisciplinary Graduate School of Science and Engineering, Tokyo Tech.²

Graduate School of Pure and Applied Sciences, University of Tsukuba³

[°]Soshi Sato¹, Kuniyuki Kakushima², Parhat Ahmet¹,

Kenji Ohmori³, Kenji Natori¹, Keisaku Yamada³, Hiroshi Iwai¹

E-mail: sato@iwailab.ep.titech.ac.jp

【はじめに】

シリコンナノワイヤトランジスタ(SiNW FET) は構造上高い短チャネル効果耐性を持ち[1]、 CMOS スケーリング極限におけるデバイス構造 として有望である。ゲート酸化膜厚を薄膜化する ことで、さらなるゲート電極によるチャネル制御 性の向上が見込まれる。また、SiNW 構造による ゲート容量の増加が見込まれる[2]。

【目的】

ゲート Si 酸化膜厚の異なる SiNW FET を作製 し、電気特性を検討する。

【実験方法】

SOI ウエハを用いて、semi gate-around 構造[3] を持つ SiNW pFET と planar SOI pFET を同一ウエ ハ上に作製した。絶縁膜厚は、rapid thermal oxidation process によりシリコン酸化膜を、3, 2, 1.5 nm を狙い成膜した。モニター用バルク Si 基 板にて所望の膜厚で成膜されたことを確認した。 SiNW 断面は曲率のある角を持った長方形であ り、チャネル幅 $w_{NW} = 14~17$ nm, チャネル高さ $h_{NW} = 9~10$ nm であった。

【結果】

ゲート長が 500 nm と 200 nm のデバイスを Split-CV 法により評価を行い、得られた CV 特性 から等価酸化膜容量(EOT)を求めた。透過電子顕 微鏡(TEM)観察から得た物理酸化膜厚との関係 を図 1 に示す。EOT は物理酸化膜厚と同等かそ れ以下の値であった。これは、SiNW 構造により ゲート容量が増大したためと考えられる。物理ゲ ート長が 65 nm のデバイスを用いて SiNW pFET の I_{ON}/I_{OFF} 特性を評価したところ、ゲート絶縁膜 厚が薄くなるほど I_{ON}/I_{OFF} 比が改善した。同じ膜 厚のゲート酸化膜を用いた場合、プレーナ型 FET と比較して、SiNW FET ではより EOT を低減で き、さらに I_{ON}/I_{OFF} 特性の改善が図ることができ ると考えられる。

(謝辞)

本研究に用いたサンプルは、株式会社 半導体先 端テクノロジーズ あすか II ライン・第1研究 部の協力を得て作製された。本研究は、独立行政 法人 新エネルギー・産業技術総合開発機構 (NEDO) ナノエレクトロニクス半導体新材料・ 新構造ナノ電子デバイス技術開発の支援を受け て行われた。

【参考文献】

J.-P. Colinge, Solid-State Electron. 48 (2004) 897-905.
S. Sato et al., Proc. ESSDERC 2010. 361-364.

[5] S. Sato et al., Solid-State Electron. 54 (2010) 925-928.

Figure 1. Relationship between equivalent oxide thickness and physical oxide thickness.

Figure 2. I_{ON}/I_{OFF} ratio of SiNW pFETs as a function of gate oxide thickness.