## CeO2を用いた抵抗変化型メモリーへの Si バッファー層の効果検討

Investigation of the effect of Si buffer layer in CeO<sub>2</sub> based RRAM Devices

東エ大フロンティア研<sup>1</sup>,東工大総理工<sup>2</sup> 〇寶春萌<sup>1</sup>,向井弘樹<sup>1</sup>,

角嶋邦之<sup>2</sup>, Parhat Ahmet<sup>1</sup>, 筒井一生<sup>2</sup>, 西山彰<sup>2</sup>, 杉井信之<sup>2</sup>, 名取研二<sup>1</sup>, 服部健雄<sup>1</sup>, 岩井洋<sup>1</sup> Tokyo Tech. FRC<sup>1</sup>, Tokyo Tech. IGSSE<sup>2°</sup>C. Dou<sup>1</sup>, K. Mukai<sup>1</sup>,

K. Kakushima<sup>2</sup>, P. Ahmet<sup>1</sup>, K. Tsutsui<sup>2</sup>, A. Nishiyama<sup>2</sup>, N. Sugii<sup>2</sup>, K. Natori<sup>1</sup>, T. Hattori<sup>1</sup>, H. Iwai<sup>1</sup>

## E-mail: dou.c.aa@m.titech.ac.jp

**[Introduction]** Resistive RAM (ReRAM), which is a strong candidate for the next generation of nonvolatile memory, still calls for new material technology because its problems in efficiency and reliability. Cerium oxide is promising for ReRAM application since it can be used as solid electrolyte having high dielectric constant and high ion conductivity [1]. In addition, cerium oxide is easy to react with Si to form silicate [2], which modifies structure and concentration of vacancies in cerium oxide film. This work proposes a new method to improve the performance of CeO<sub>2</sub> based RRAM by utilizing Si buffer layer and investigate its effects in details.

**[ Experiment ]** The structure of the devices is schematically shown in Fig.1. Fabrication started from growing a  $SiO_2$  layer on highly doped Si wafers by thermal oxidation, followed by formation of contact windows through  $SiO_2$  layer. After that, a TiN bottom electrode layer, a Si buffer layer, a CeO<sub>2</sub> switching layer and a W bottom electrode layer were deposited in

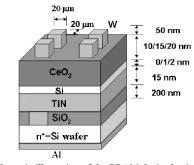
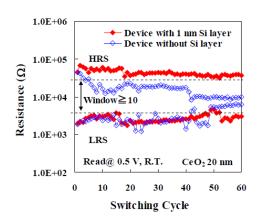




Fig.1. Schematic illustration of the RRAM device having W/CeO<sub>2</sub>/Si/TiN structure.

succession. Finally, Al was evaporated as a back contact followed by RTA in  $N_2$  ambient for 30 s at 400 °C. Device without Si buffer layer was also fabricated for comparison.



**[Result]** W/CeO<sub>2</sub> (20 nm)/Si (1 nm)/TiN device shows the bipolar resistance switching behaviors. As shown in Fig.2, the ratio of high resistance state to low resistance state of this device takes an average value of about 20. Furthermore, it is also clearly shown in Fig.2 that by incorporating Si layer, the device exhibits enlarged window and better endurance characteristics. After 60 times cycles, devices incorporating Si layer still has a window of about 15 while the window of the device without incorporating Si layer degraded to 1.5.

Fig.2 Endurance characteristics of the device with and without Si buffer layer

- [1] C. Lin, et al., Surface & Coating Technology 203, p.480-483, (2008)
- [2] K. Kakushima, et al., VLSI Tech. Dig. p.69-70(2010).