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1.1 Field Effect Transistor Technology 

 

  The Si-MOSFET has been traditionally regarded a slow device not suitable 

for RF applications. The main reason is that the electron mobility in silicon is by 

nature lower than in III-V compounds devices. In 1990s, the field of RF 

transistors has been dominated by III-V transistors. The commercially available 

Si-based RF transistor was the Si-bipolar transistor for application in the lower 

GHz range. However recent aggressive downsizing of CMOS devices has 

improved its RF characteristics significantly and some of them have already 

exceeded some of Si-bipolar and GaAs transistors. The situation changed 

dramatically and Si-MOSFETs became widely accepted RF devices. [1-1, 1-2, 

1-3]  

In this section, Field Effect Transistor (FET) is focused and its performance trends 

are discussed. Figure 1-1 shows the cross-section of three FET devices: a gallium 

arsenide (GaAs) metal-semiconductor FET (MESFET), a III-V high-electron 

mobility transistor (HEMT) and a silicon MOSFET. Lg is the gate length and A is 

the gate-to-channel distance. 

The first FET is the GaAs MESFET, first developed during the 1970s and 

1980s. A gate Schottky contact is directly realized on the active channel layer. 

FET technology continued to improve with the development of III-V HEMT 

during the early 1980s. In this technology, a heterojunction is built up through the 
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association of a doped Schottky barrier layer with a channel layer (the Schottky 

barrier layer has the higher bandgap). This system offers high flexibility in terms 

of channel engineering; the semi-insulating substrate is either GaAs or indium 

phosphid (InP). The channel is formed by a two-dimensional electron gas, 

separated from the ionized doping atoms from which they were released, and 

electron transport is improved in comparison to the GaAs MESFET. 

During GaAs MESFET and III-V HEMT technologies have evolved, silicon 

MOSFET performance also kept improving, with the main focus to digital 

applications. A silicon MOSFET is fabricated using a self-aligned process: a 

polysilicon gate is deposited on the oxide (SiO2), followed by the formation of 

spacers that are used to realize diffused source/drain contacts. The channel charge 

is formed at the interface oxide/silicon for a DC gate-to-source voltage higher 

than the threshold voltage, Vth. [1-4] 
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Fig.1-1. Cross section for various FET. 

(a) GaAs MEFET (b)Ⅲ-ⅤHEMT (c)silicon MOSFET 
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1.2 Performance Trends of RF transistors  

 

  Figure 1-2 shows the reported cutoff frequencies, fT, and maximum 

frequencies of oscillation, fmax of Si MOSFETs and other III-V FETs as a function 

of time. The fT and fmax data vs. time plots clearly indicate that the frequency limits 

of the Si-based and of the III-V RF transistor have been enhanced continuously. 

Sub-100 nm gate MOSFETs showing both cutoff frequencies and maximum 

frequencies of oscillation well in excess of 100 GHz as well as low noise figures 

have been reported. Figure 1-3 shows the cutoff frequency; fT and maximum 

frequency of oscillation; fmax of experimental Si-MOSFETs as a function of gate 

length. The fT and fmax of GaAs MESFETs, GaAs pHEMTs, and InP HEMT are 

also included. The best record of fT and fmax at 2010 are: 

 

fT =628 GHz [1-61] for 30nm-InAs/InP HEMTs and fmax =1 THz [1-58] for 

50nm-InP HEMTs , 

fT=485 GHz [1-26] and fmax =410 GHz [1-31] for 40nm-Si MOSFETs. 

 

  Currently GaAs pHEMTs are the most popular commercial GaAs-based 

RF FETs. They outperform the traditional GaAs MESFETs and AlGaAs/GaAs 

HEMTs in terms of speed and noise performance. Figure 1-2(b) shows that no 

clear gate length dependence could be observed. While fT can be increased by 
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scaling down the gate length, fmax depends strongly on not only gate length, but 

also the parasitic components. So, much work has been done to optimize the 

design of Si RF-MOSFETs, especially the gate design, and to improve their RF 

performance. The MOSFET with the highest fmax at that time has been a 0.3-µm 

gate transistor showing an fmax of 37 GHz and a rather low fT of 20 GHz [see 

chapter 3].  

During the past few years, also the noise performance of Si RF MOSFETs has 

been improved considerably. Figure 1-4 shows the best reported minimum noise 

figures of Si MOSFETs and other FETs as a function of frequency. It is clear from 

this plot that the use of low noise GaAs MESFET technology is mainly limited to 

applications in the centimeter wavelength range (fT < 30 GHz); the reason for 

which is closely related to gm (respectively fT), which limits NFmin. Note that an 

excellent result was achieved in [1-38]. Later, during the early 1980s, HEMT 

technology had been developed, allowing applications in the 

centimeter/millimeter wavelength range to be addressed; the use of the 

heterojunction leads to an increase in channel mobility and fT, which can further 

be improved through channel engineering. 

  The first heterojunction-based FET (GaAs pHEMT) technology can 

achieve a NFmin around 2.3 dB at 94 GHz [1-39] (Lg =0.1 µm, fT =120 GHz). To 

obtain such a performance, gate resistance and source resistance have been 

optimized, as well as the device aspect ratio Lg/A.  
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  Though the NFmin of a GaAs pHEMT already enables good low-noise 

performance, it still too high to address a number of important applications in 

W(75-110 GHz) and G (140-220 GHz) bands, respectively. For such applications, 

the best low noise FET technology is InP HEMT, which is also illustrated in 

Fig.1-4. This technology performs better than GaAs pHEMT technology, 

achieving NFmin of 1.4 dB [1-47] at 95 GHz, and fT =150 GHz. While Lg=0.15 µm 

in[1-47] is larger than for the GaAs pHEMT [1-39], the technology benefits from 

higher fT values. InP HEMT the best low-noise technology currently. 

  As shown in Fig.1-4, silicon MOSFETs technology features good NFmin . 

The lowest noise figures are below 0.5 dB up to 26 GHz [1-15]. This is 

sufficiently low for many applications, but does not outperform GaAs pHEMT 

despite an aggressive gate length downscaling [1-15]. Nevertheless, the enhanced 

RF performance of Si MOSFETs obtained recently make these devices very 

attractive for many RF applications in the lower GHz range. Especially in market 

segments where high-level integration is required, Si MOSFETs are serious 

competitors to other RF transistors, such as III-V HEMTs.  Si RF-MOSFETs are 

in high-volume production and are widely used in commercial products. 
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(b) Maximum frequency of oscillation, fmax 

Fig.1-2. Evolution of (a) the cutoff frequency, fT and (b) the maximum frequency of 

oscillation, fmax of different RF transistor technologies. 
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Fig.1-3. Reported (a) cutoff frequencies; fT and (b)maximum frequency of oscillation; fmax  

for RF Si-MOSFETs, InP-pHEMTs, GaAs-pHEMTs and GaAs-MESFETs  

as a function of gate length. 
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Fig.1-4. Reported minimum noise figure; NFmin for RF Si-MOSFETs, 

InP-pHEMTs, GaAs-pHEMTs and GaAs-MESFETs as a function of frequency. 
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1.3. Objective and Organization of This Study 

 

  In order to realize the low-cost and high-performance RF mixed signal 

system-on-chip, a deeper understanding of the scaling effects on RF-MOSFETs is 

significantly important. 

The objective of this study is to investigate the scaling effects on the high 

frequency performance of MOSFETs.  

  The thesis consists of seven chapters, as illustrated in Fig.1-5. Following 

this chapter, chapter 2 described AC S-parameter measurements, high-frequency 

noise measurements, large-signal measurements, and two-tone intermodulation 

distortion measurements. 

  In chapter 3, a novel and practical configuration of MOSFETs to attain 

remarkable high frequency performance was proposed by using a 0.25 µm CMOS 

technology and the parasitic effect of Si-MOSFETs for high frequency 

performance was also discussed. 

  In chapter 4, it was studied that the scaling effects from the 150 nm node 

to the 65 nm node on RF CMOS devices which are basically made of logic CMOS 

process without any change.  The purpose of the study is to confirm the 

suitability of the 65 nm logic CMOS for RF application. In particular, RF 

characteristics -- such as cut-off frequency (fT), maximum oscillation frequency 

(fmax), minimum noise figure (Fmin), intrinsic gain (gm/gds), peak power-added 
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efficiency (PAE), 1dB compression point (P1dB), third order inter-modulation 

distortion (IM3), and third order intercept point (IP3) -- of the 65 nm RF mixed 

signal CMOS were compared with those of the 150 nm CMOS.  The gate layout 

dependence on the RF performance has been also investigated. 

  In chapter 5, The RF noise parameter (Fmin, Rn,Γopt) of 45 nm node 

MOSFETs were measured from 5 to 15 GHz. Then, the noise values ― the drain 

channel noise 2
di , the induced gate noise 2

gi  and their correlation noise *
dgii  ―

from S-parameters and noise parameters were extracted by using noisy two-port 

theory. Next, the noise coefficients P, R, and C were extracted by using an 

extended van der Ziel’s model. After that, the extracted noise coefficients of the 

45 nm node MOSFETs versus frequency, bias condition, and gate length are 

presented. Finally, the effect of noise coefficients on noise figure is discussed.  

  In chapter 6, a novel representation of the thermal noise for equivalent 

noise temperature was proposed by applying an extended van der Ziel’s model. 

The noise temperatures of the 45 nm node n-MOSFETs versus gate length were 

extracted. A comparison between the proposed representation and Pospieszalski's 

model is also performed. Finally, a physical validity of proposed representation 

for equivalent noise temperature was discussed, especially for drain noise 

temperature, Td.  
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  Finally, in chapter 7, the studies referred to in this thesis are summarized 

and their importance is described. 
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2.1 Introduction 

 

  RF measurement and characterization are a very important step in the 

development of device design, characterization and modeling. While the 

characterization of electronic components in the DC domain only requires a 

voltmeter and an amperemeter, the frequency performance is affected by 

magnitude dependence and phase shift of the currents and voltages. In this 

chapter, AC S-parameter measurements, high-frequency noise measurements, 

large-signal measurements, and two-tone intermodulation distortion 

measurements are described. 

 

2.2 AC S-parameter Measurements 

 

2.2.1 De-embedding Techniques using The OPEN and The SHORT Dummy 

Device 

 

  For on-wafer device characterization, using G-S-G (ground-signal-ground) 

probes, the test pads degrade the performance of the very inner "DUT" 

(device-under-test) by their layout specific capacitive and inductive pad parasitics. 

In order to extend the calibration plane to the inner DUT, these outer parasitics 

effects have to be stripped off. This is called de-embedding. A method to also strip 
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off the series parasitic influence from the measured data is to de-embed the inner 

DUT from both the "OPEN" and "SHORT" dummy device. Figure 2-1 indicates 

the layouts of a DUT and dummy structures used in the method based on the 

parallel-series configuration. The OPEN dummy structure consists of the signal 

pads and interconnections without the transistor. The SHORT dummy structure 

consists of the signal pads and interconnections except with shorted 

interconnections at the location of the transistor. 

  The idea behind this method is, that the electrical behavior of the pads 

around the DUT can be described by a combination of exclusively parallel 

(OPEN) and exclusively serial (SHORT) circuit elements as described in 

Fig.2-2(a). 
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Fig.2-1. A device-under-test (DUT) and its corresponding “OPEN” and “SHORT” 

dummy structures for the DUT modeled in the parallel-series configuration.[2-5] 
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Fig.2-2. For“OPEN” and “SHORT” dummy device de-embedding using Y- and Z-matrix 

subtraction.[2-5] 
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  Figure 2-2(b) and (c) indicates Y- and Z-matrix components of the OPEN 

and the SHORT dummy device. Looking at Fig.2-2(a), the schematic of the 

SHORT dummy device, how the matrices of the serial and parallel parasitic 

elements can be determined: 

(1) Parallel elements: 

  The S-to-Y converted S-parameters of the OPEN dummy give the 

Y-parameters of the parallel elements. 

(2) Serial elements: 

  The Z-parameters of the serial elements can be determined from the 

SHORT dummy when the Y-parameters of the parallel elements are known and 

de-embedded. 

 

  With this pre-assumption, the de-embedding can be performed following 

these matrix operations: 

 De-embed from OPEN: 

  
OpenTotalOpenShort

OpenTotalOpenDUT

YYY

YYY

−=

−=

/

/

 

 Convert to Z: 

  )(

)(

//

//

OpenShortOpenShort

OpenDUTOpenDUT

YZZ

YZZ

=

=
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 De-embed from SHORT: 

  OpenShortOpenDUTDUT ZZZ // −=  

 Convert to S: 

  ( )DUTDUT ZSS =  

  In a first step, the influence of the parallel parasitic elements is removed 

from both the SHORT and DUT. This is done by subtracting the Y-parameters of 

the OPEN from the Y-parameters of the SHORT and DUT. In the following step, 

the resulting Y-parameters are converted to Z-parameters and in this 

representation, the influence of the serial parasitic elements is removed by 

subtracting the de-embedded Z-parameters of the SHORT from the de-embedded 

Z-parameters of the DUT. The resulting Z-parameters of the DUT are then finally 

converted back to S-parameters. 

 

 

2.2.2 Cutoff Frequency, fT  

 

  S-parameter measurements are used to calculate two important figures of 

merit for transistors: the cutoff frequency of the AC-current gain, fT, and the cutoff 

frequency of the maximum power gain, also called the maximum oscillation of 

frequency, fmax. 
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  To calculate fT, the S-parameters are converted to H-parameters and, in 

graphical terms, the AC current gain, |H21| (in dB), is plotted on a linear scale as a 

function of frequency on a log scale. The fT of the transistor is the point at which 

|H21| crosses the x-axis. The |H21| curve is assumed to have perfect single-pole, 

20-dB/decade, roll-off characteristics. The fT is calculated using the base transit 

time τT, where 

    ω
τ

21

21sin
H

H
T

∠
= .      

  (2-1) 

Then fT is given by 

    
T

Tf πτ2
1

= .       

  (2-2) 

 

2.2.3 Maximum Oscillation Frequency, fmax 

 

  In 1954, Mason defined a unilateral power gain for a linear two-port, and 

discussed some of its properties [2-3, 2-4]. The unilateral power gain U is the 

maximum power gain that can be obtained from the two-port, after it has been 
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made unilateral with the help of a lossless and reciprocal embedding network 

(which provides the required feedback). 

Mason defined the problem as "being the search for device properties that are 

invariant with respect to transformations as represented by an embedding 

network" that satisfy the four constraints listed below [2-4]. 

 1.The embedding network is a four-port.  

 2.The embedding network is linear.  

 3.The embedding network is lossless.  

 4.The embedding network is reciprocal.  

 Mason showed that all transformations that satisfy the above constraints can be 

accomplished with just three simple transformations performed sequentially. 

Similarly, this is the same as representing an embedding network by a set of three 

embedding networks nested within one another. The three mathematical 

expressions can be seen below.[2-4] 

 1. Reactance padding: [ ]tZZ −  and [ ]*ZZ +  

 2. Real transformations: and [ ]tZZ − [ ]*ZZ +  and 
[ ]
[ ]*det

det
ZZ
ZZ t

+
−

 

 3. Inversion: The magnitudes of the two determinants and the sign of the 

denominator in the above fraction remain unchanged in the inversion 

transformation. Consequently, the quantity invariant under all three conditions is: 
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[ ]
[ ]*det

det
ZZ
ZZ

U t

+
−

=        (2-3a) 

[ ] [ ] [ ] [ ]( )21122211

2
2112

4 ZZZZ
ZZ

ℜℜ−ℜℜ
−

=     (2-3b) 

[ ] [ ] [ ] [ ]( )21122211

2
1221

4 YYYY
YY

ℜℜ−ℜℜ
−

=     (2-3c) 

While Mason's unilateral power gain can be used as a figure of merit across all 

operating frequencies, its value at fmax is especially useful. fmax is the maximum 

oscillation frequency of a device, and it is defined when U(fmax) = 1. This 

frequency is also the frequency at which the maximum stable gain; MSG and the 

maximum available gain; MAG of the device become unity. Consequently, fmax is 

a characteristic of the device, and it has the significance that it is the maximum 

frequency of oscillation in a circuit where only one active device is present, the 

device is embedded in a passive network, and only single sinusoidal signals are of 

interest. 
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2.3 Noise Characterization 

 

  Noise De-embedding techniques are based on the noise power matrix first 

introduced by Haus and Adler [2-1] and letter renamed the noise correlation 

matrix by Hillbrand and Russer [2-2]. In this section, the commonly used noise 

de-embedding procedure based on the parallel-series configuration is described. 

This section also describes a general and systemic procedure for any equivalent 

noise circuit to extract the noise current of the drain channel noise 2
di , the induced 

gate noise 2
gi  and their correlation noise *

dgii  . 

 

2.3.1 Noise De-embedding Procedure 

 

  The RF probe-pad parasitics are de-embedded from the measured noise 

parameters with the help of "OPEN" and "SHORT" dummy structures. Based on 

the DUT and dummy structures shown in Fig.2-1, the procedure for the noise 

parameter de-embedding and extraction are described. [2-5] 

 

1. Measure the scattering parameters [SDUT],[SOPEN],[SSHORT] of a DUT,"OPEN" 

and "SHORT" dummy pads, and then convert each of them to the Y parameters 

[YDUT],[YOPEN] and [YSHORT] using the conversion formula  
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[ ]
])1)(1[(

)1)(1(2
2)1)(1(

211222110

2112221121

1221121111

SSSSZ
SSSSS

SSSSS

Y
−++⋅









+−+−

−++−

=

  (2-4) 

 

2. Measure the noise parameters , NFmin
DUT ,Yopt

DUT and Rn
DUT of the DUT. 

3. Calculate the correlation matrix [CADUT] of the DUT from the measured noise 

parameters using 

 

[ ]


















⋅−
−

−
−

=
2min

*min

0

2
1

)(
2

1

2
DUT

opt
DUT
n

DUT
opt

DUT
n

DUT

DUT
opt

DUT
n

DUT
DUT
n

DUT
A

YRYRNF

YRNFR
kTC

  (2-5) 

where k is Boltzmann's constant, T0 is the standard temperature, and the asterisk 

denotes the complex conjugate. 

4. Convert the [CA
DUT] matrix to its [CY

DUT] correlation matrix using 

[ ] [ ] [ ] [ ]†DUTDUT
A

DUTDUT
Y TCTC ⋅⋅=                         (2-6) 

where [TDUT] is given by 

[ ] 








−
−

=
0
1

21

11
DUT

DUT
DUT

Y
Y

T                                    (2-7) 



 
 
 
 A Study on High-Frequency Performance in MOSFETs Scaling 
 

 

 41  

and the † in  [TDUT] denotes the Hermitian conjugate.  

5. Calculate the correlation matrix [CY
OPEN] of the "OPEN" dummy structure with  

[ ] [ ]( )OPENOPEN
Y YkTC ℜ= 2                                   (2-8) 

where ( )ℜ  stands for the real part of the elements in the matrix and T is the 

absolute temperature at which the measurement was made. 

6. Subtract parallel parasitics from the [YDUT] and [YSHORT] according to 

[ ] [ ] [ ]OPENDUTDUT
I YYY −=  and                            (2-9) 

[ ] [ ] [ ]OPENSHORTSHORT
I YYY −=  .                          (2-10) 

7. De-embed [CY
DUT] from the parallel parasitics using 

[ ] [ ] [ ]OPEN
Y

DUT
Y

DUT
YI CCC −= .                               (2-11) 

8. Convert the [YI
DUT] and [YI

SHORT] to [ZI
DUT] and [ZI

SHORT] with the conversion 

formula 

[ ] 







−

−
−

=
1121

1222

21122211

1
YY
YY

YYYY
Z                      (2-12) 

9. Convert [CYI
DUT] to [CZI

DUT] with  

[ ] [ ] [ ] [ ]†DUT
I

DUT
YI

DUT
I

DUT
YI ZCZC ⋅⋅=                         (2-13) 

10. Calculate the correlation matrix [CZI
SHORT] of the "SHORT" test structure after 

de-embedding the parallel parasitics with 
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[ ] [ ]( )SHORT
I

SHORT
ZI ZkTC ℜ= 2  .                              (2-14) 

11. Subtract series parasitics from the [ZI
DUT] to get the Z parameters [ZTRANS] of 

the intrinsic transistor using 

[ ] [ ] [ ]SHORT
I

DUT
I

TRANS ZZZ −=  .                             (2-15) 

12. De-embed [CZI
DUT] from the series parasitics to get the correlation matrix [CZ] 

of an intrinsic transistor using 

[ ] [ ] [ ]SHORT
ZI

DUT
ZIZ CCC −=  .                                (2-16) 

13. Convert the [ZTRANS] of the intrinsic transistor to its chain matrix [ATRANS] 

with the conversion formula 

[ ] 






 −
=

22

2112221111

21 1
1

Z
ZZZZZ

Z
A                          (2-17) 

14. Transform [CZ] to [CA] with 

[ ] [ ] [ ] [ ]†AZAA TCTC ⋅⋅=                                     (2-18) 

where [TA] is given by  

[ ] 








−
−

= TRANS

TRANS

A A
A

T
21

11

0
1

 .                                    (2-19) 

15. Calculate the noise parameters, NFmin , Yopt and Rn of an intrinsic transistor 

from the noise correlation matrix in chain representation [CA] using the 

expressions 
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 ( ) ( )( ) 




 ℑ−++ℜ+= 2

12221112min
11 AAAA CCCC

kT
NF  , 

(2-20) 

( )( ) ( )
A

AAAA
opt C

CiCCC
Y

11

12
2

122211 ℑ+ℑ−
=             (2-21) 

and 

kT
CR A

n 2
11=                                             (2-22) 

where ( )ℑ  stands for the imaginary part of the elements in the matrix and i is 

the imaginary unit.
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2.3.2 Noise Parameter Extraction Theory  [2-5, 2-6, 2-7] 

 

   The noise figure, defined as the signal-to-noise ratio at the input port 

divided by signal-to-noise ratio at the output port, is widely used as a measure of 

noise performance of a noisy two-port network. It is usually expressed in dB. The 

noise figure (F) is generally affected by two factors - the source (input) impedance 

at the input port of a network and the noise sources in the two-port network itself. 

  The noise figure of a two-port network can defined as 

inNA

NNinNA

inNA

outN

PG
PPG

PG
P

F
,

,,

,

,

⋅
+⋅

=
⋅

=                  (2-22) 

where outNP ,  is the output noise power， AG  is the available gain of the two-port, 

inNP ,  is the input noise power, and outNP , is the noise contributed to the output by 

the two-port. 

  ln general， F  may be written as 

2

min opts
s

n yy
g
rFF −+=                           (2-23) 

where  ys=gs+jbs  is the source admittance seen by the two-port network, 

yopt=gopt+jbopt is the optimal source admittance which will result in the minimum 

noise figure Fmin，and  rn=Rn/Ro is the normalized noise resistance of the 

two-port. Note，that small letters are used for normalized quantities and capital 
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letters for actual values. At high frequencies， the admittance parameter y is 

usually converted to reflection coefficient using Γ= (1 - y)/(1 + y) . Fmin, Rn, Γ0  

are called noise parameters of the two-port. A noisy two-port may be represented 

by a noise-free two-port and two current noise sources as shown in Fig. 2-3(a). 

These correspond to gate and drain sources in an FET device and are usually 

correlated. From y-parameters of the two-port and the noise source information， 

one may evaluate the noise parameters of the two-port. For this purpose， we also 

represent the noisy two-port with the noise free two-port and a noise current and a 

noise voltage source at the input side of the two-port, as shown in Fig.2-3(b). 

  From the y-parameters, of the two-port and the noise currents di , gi ，and 

the correlation term *
dgii  , we can calculate i and u and the corresponding 

correlation factor called Ycor as 

corun uYii +=          

2* uYiu cor=       (2-24) 

where iun is the part of noise current in i that is uncorrelated to u and uYcor is the 

part that is fully correlated to u.  In addition, the values of i, u and Ycor can be 

calculated from 

diy
u

21

1
−=          
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dg i
y
yii

21

11−=          

corcor

d

dg
cor jBG

i

ii
yyY +=−=

2

*

2111   , (2-25) 

and the noise power of i and u can be calculated from 

u
d RfkT

y
iu ⋅∆== 42
21

2
2

     (2-26) 









ℜ−+= *

21

*
11*

21

11222 2
y
yii

y
yiii dgdg      

iGfkT ⋅∆= 4       (2-27) 

where ℜ [ ] denotes the real part of [ ] , Yopt is the optimal source admittance, and 

Ycor is the correlation factor given by  

opt
n

cor Y
R

FY −
−

=
2

1min
  .    (2-28) 

From these we can calculate 

un RR =           

2
cor

n

i
opt B

R
GG −=         
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coropt BB −=          

( )optcorn GGRF ++= 21min  .    (2-29) 

Finally, we can obtain 

2
210

2 4 YRfkTi nd ⋅∆=                                     (2-30) 

( )[ ]{ }*
1111

2
11

2

0
2 24 YYYYYRfkTi coroptng −ℜ+−⋅∆=      

 (2-31) 

( ) *
21110

* 4 YRYYfkTii ncordg −∆=   .                      (2-32) 
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(a) Admittance representation 
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(b) Chain representation 

 

Fig.2-3. Different representations of noise two-port networks 
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2.4 Large-Signal Measurements 

 

  Determining how active devices behave at different power levels is also an 

important consideration when designing telecommunications systems. Many RF 

amplifiers are designed to operate in the weakly nonlinear region, where 

power-added efficiency (PAE) peaks. The power-added efficiency is defined as 

the ratio of the additional power provided by the amplifier to the dc power,  

dc

inout

P
PPPAE −

=        (2-33) 

  Large-signal measurements provide output power, gain, and efficiency 

information at a given input power level. Figure 2-4 shows the results of 

large-signal measurements made on a MOSFETs. For these measurements, both 

the input and output impedance were set to 50 Ω. Figure 2-4 also illustrates the 

power levels at which the device enters compression and the power-added 

efficiency; PAE in that region. The 1-dB gain compression point, usually given in 

terms of output power, is an important quantity when considering the dynamic 

range of the transistor. 

  In addition to power level considerations, impedance matching throughout 

the system is an essential aspect of RF circuit design. Thus, it is also important to 

explore how the input and output impedance presented to each device in the 

system affect the performance of that device in the circuit. Furthermore, a 
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designer may want to determine the necessary impedance-matching conditions to 

achieve a specific desired performance from the device. Once either the desired 

input or output impedance is determined, contours can be generated for the other 

termination to illustrate tradeoffs that must be made between, for example, 

maximum power-added efficiency and maximum output power. [2-8] 

 

2.5 Distortion 

 

  Many components of telecommunication systems receive numerous 

signals closely spaced in frequency at their inputs. The nonlinearities inherent in 

all active devices lead to certain undesirable effects, such as intermodulation and 

harmonic distortion, which in turn lead to the transfer of power to other 

frequencies near the frequency of interest. For a device with two signals at its 

input, one at a frequency f1 and the other at a frequency f2, it is traditionally the 

third-order (at frequencies 2f1 - f2 and 2f2- f1) and fifth-order (3f1-2f2 and 3f2-2f1) 

intermodulation products that are of most concern, because they are near the two 

frequencies of interest (f1 and f2) and therefore will be the most difficult to filter 

out of the system. Therefore, RF and telecommunications applications, such as 

power amplifiers, require devices that exhibit highly linear operating 

characteristics. Two-tone measurements must be performed on the device 

offerings in RF-CMOS technologies to fully analyze the linearity of the devices 
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offered. Use is made of a load-pull system to make these measurements. The 

third-order and fifth-order intermodulation products are commonly measured, and 

the third-order intercept point; IP3, an important figure of merit for describing 

linearity, is obtained. [2-8] 
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Fig.2-4. Sample of measured large-signal and intermodulation distortion data for a 

MOSFET and the determination of IP3 is also illustrated. Pout denotes the output power, 

IM3 denotes the third-order intermodulation product, PAE denotes the power-added 

efficiency, and Pin denotes the input power. 
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3.1 Introduction 

 

  The Si-MOSFET technology is a new candidate for high-level system 

integration and cost reduction of mobile communication LSIs. Some system 

integrations for RF and baseband circuits have been currently realized with the 

Si-MOSFET technology [3-3, 3-4]. The lowest noise figure of 0.6dB at 2GHz 

operation is reported, using a 0.2µm Ni-salicide CMOS technology [3-5]. 

  In this chapter, a novel and practical configuration of MOSFETs to attain 

remarkable high frequency performance is proposed by using a 0.25µm CMOS 

technology and the parasitic effect of Si-MOSFETs for high frequency 

performance is also discussed. 

 

3.2 Device Configuration and Parasitic Components 

 

  Figure 3-1 shows a schematic top-view of unit Mesh-Arrayed 

MOSFET(MA-MOS) with ring-shaped gate electrode. Ring-shaped gate electrode 

is often used for power devices such as DMOS. 

  Although the gate electrode of DMOS is arranged around the source area, 

the ring-shaped gate electrode of MA-MOS surrounds the drain area for the 

reduction of Rs and Cgd. Unit gate finger length (Wf) of the MA-MOS is 7.0 µm 

and 28 units are arrayed by mesh, as shown in Fig.3-2. We also fabricated 
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conventional MOSFETs with the 1 and 2 contact holes at each finger. The finger 

length ranges from 5 µm to 20 µm with the same total gate width of 200µm to 

compare the performance, as shown in Fig.3-3. 

  The equivalent circuit parameters of the conventional n-MOS and 

n-channel MA-MOS are extracted by measured S-parameters. Figure 3-4 shows a 

simplified equivalent circuit of MOSFET. It also summarizes equations for 

high-frequency characteristics: current gain cutoff frequency (fT), noise figure, and 

maximum oscillation frequency (fmax) [3.4]. These equations suggest that the 

reduction of both Rg and Rs is effective in improving NFmin and fmax, and the 

reduction of Cgd is effective in improving fmax.  Figure 3-5 shows the dependence 

of parasitic components on gate finger length for various n-MOS patterns. 

MA-MOS can reduce the parasitic components: Rg, Rs, Cgd, and Cds successfully 

owing to ring-shaped gate electrode and mesh layout. In particular, Cds is reduced 

to be 60% of conventional MOSFET with the gate width of 5 µm. 

  The MA-MOS configuration was optimized to furthermore reduce Rg and 

Cgs. Figure 3-6 shows two types of the MA-MOS configuration. Figure 3-7 shows 

the dependence of parasitic components on device configuration. The optimized 

MA-MOS can reduce Rg and Cgs, which are 50% and 85% of non-optimized 

MA-MOS, respectively. 
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Fig.3-1. Schematic top view of Mesh-Arrayed MOSFET(MA-MOS) with ring-shaped gate 

electrode. 

 

 

 

Fig.3-2. Schematic top view of MA-MOS layout. 

 



 
 
 
 A Study on High-Frequency Performance in MOSFETs Scaling 
 

 

 58  

g
at
e
 f
i
ng

er
 l
en

g
th
 
 

Wu

S D S

N

gate electrode 

contact hole

S D

g
at
e
 f
i
ng

er
 l
en

g
th
 
 

Wu

S D S

N

gate electrode 

contact hole

S D

 

Fig.3-3. Schematic top view of conventional MOSFET. 
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Fig.3-4. Silicon MOSFET small-signal equivalent circuit and equations  

for high-frequency characteristics.
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(b) Parasitic capacitance 

 

Fig.3-5. The dependence of (a) parasitic resistance and (b) parasitic capacitance 

on gate finger length for various n-MOS patterns. 
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Fig.3-6. Two type of MA-MOS configuration. 
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Fig.3-7. The dependence of parasitic components on device configuration. 
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3.3 AC Characteristics 

 

  High-frequency AC characteristics are measured by an on-wafer 

measurement system. Current gain cutoff frequencies (fT) for various 0.3 µm 

n-MOS and n-channel MA-MOS are shown in Fig.3-8. fT_peak of 35 GHz and 20 

GHz are obtained for 0.3 µm conventional n-MOS with Wf=20 µm and 0.3 µm 

n-channel MA-MOS, respectively. Since parasitic gate capacitance increases with 

the number of gate fingers as shown in Fig.3-5, fTs of the short finger MOS and 

MA-MOS result in smaller than that of the long finger length MOS. 

  Figure 3-9 shows the dependence of NFmin and associated gain(Ga) on Wu. 

NFmin of 1.0 dB at 2 GHz with Ga of 20 dB are obtained for the 0.3µm 

conventional n-MOS with Wf=5 µm. MA-MOS realizes sufficient low NFmin of 

0.6 dB at 2 GHz with Ga of 23 dB, though using non-silicide gate. On the other 

hand, for non-optimized MA-MOS shown in Fig.3-6, NFmin value of 0.9 dB at 2 

GHz with Ga of 21 dB are obtained. The result indicates the effectiveness of the 

optimized device configuration on the NFmin and Ga. 

  Moreover, fmax of 37 GHz is obtained for optimized MA-MOS by 

maximum stable gain and maximum available gain (MSG/MAG) plots as shown 

in Fig.3-10. It is mainly due to the reduction of Rg, Rs, and Cgd by ring-shaped gate 

electrode and mesh layout. 
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Fig.3-8. The dependence of Current gain cutoff frequency on drain current. 
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Fig.3-9. The dependence of NFmin and Ga on gate finger length. 
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Fig.3-10. The dependence of maximum stable gain and maximum available gain 

(MSG/MAG) on frequency. 
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3.4 Conclusion 

 

  A Mesh-Arrayed MOSFET with ring-shaped gate electrode for 

high-frequency analog application has been developed. The dependence of noise 

figure and maximum oscillation frequency on parasitic components in MA-MOS 

configuration has been discussed. The MA-MOS realizes low noise figure of 0.6 

dB at 2 GHz and high fmax of 37 GHz, using a non-salicide 0.25 µm CMOS 

technology. 

  The MA-MOS is the most practical candidate to realize low cost and high 

performance one-chip RF Baseband CMOS LSI. 
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  4.4.2  1dB Compression Point: P1dB 

  4.4.3  Third Order Intercept Point: IP3 

4.5  Conclusion  

References 



 
 
 
 A Study on High-Frequency Performance in MOSFETs Scaling 
 

 

 69  

4.1. Introduction 

 

  The downscaling of CMOS technology has resulted in strong improvement 

in RF performance of bulk and SOI MOSFETs. Owing to the progress of the RF 

performance of smaller geometry MOSFETs, the monolithic integration of both 

RF front-end and baseband circuits are now possible up to 2 or 5 GHz frequency 

region with the RF mixed signal CMOS technology. Moreover, in the research 

level, even millimeter-wave applications can be implemented in pure CMOS 

process [4-1, 4-2].  

  In order to realize the low-cost RF mixed signal CMOS system-on-chip, 

the device structure of the RF CMOS should be the same as that of the logic 

CMOS so that no additional fabrication process steps are necessary. In other 

words, basically no change from the logic CMOS is allowed for the RF CMOS 

device structures except their horizontal layout which can be realized only by 

mask pattern design change.  

  Because subtle differences exist in the optimization of logic and RF 

CMOS device structures, there has been always a concern for every scaled CMOS 

generation, whether such low-cost RF mixed CMOS devices can satisfy the RF 

requirements for the high-performance RF application, such as cellular phones. 

For example, the degradation of the signal to noise ratio under the lower supply 

voltage in the scaled CMOS and degradation of the matching of pair MOSFET 
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characteristics in the short-channel deices are big concerns.  Also, while cut-off 

frequency (fT) can be increased by scaling down the gate length, another 

performance such as maximum oscillation frequency (fmax), and minimum noise 

figure (NFmin) depend strongly on the parasitic components [4-3, 4-4, 4-5].  

  In this chapter, it was studied that the scaling effects from the 150 nm node 

to the 65 nm node on RF CMOS devices which are basically made of logic CMOS 

process without any change. The purpose of the study is to confirm the suitability 

of the 65 nm logic CMOS for RF application, despite the above concerns. In 

particular, RF characteristics -- such as cut-off frequency (fT), maximum 

oscillation frequency (fmax), minimum noise figure (Fmin), intrinsic gain (gm/gds), 

peak power-added efficiency (PAE), 1dB compression point (P1dB), third order 

inter-modulation distortion (IM3), and third order intercept point (IP3) -- of the 65 

nm RF mixed signal CMOS were compared with those of the 150 nm CMOS.  

The gate layout dependence on the RF performance has been also investigated.   

 

4.2. Methodology and Experimental Procedures 

 

  In this chapter, we fabricated multi-finger n-MOSFETs using 65 nm node 

CMOS technology, as shown in Fig.4-1(a). The gate length is 60nm and unit gate 

finger length (Wf) ranges from 0.32 µm to 8 µm with the same total gate width of 

160 µm to compare the performance. The multi-finger n-MOSFETs using 150 nm 



 
 
 
 A Study on High-Frequency Performance in MOSFETs Scaling 
 

 

 71  

node technology are also compared. Gate length is 180 nm and unit gate finger 

length (Wf) ranges from 1 µm to 20 µm with the same total gate width of 160 µm. 

Device parameters of the n-MOSFETs for 65 nm and 150 nm are shown in Table 

4-1. The finger lengths of the n-MOSFETs for the 65 nm and 150 nm are shown 

in Table 4-2. The optimization of the unit gate finger length is significantly 

important in order to obtain good RF performance [4-6]. Figure 4-1(b) shows a 

simplified small-signal equivalent circuit of MOSFET [4-7] which is adopted in 

this chapter. 

  The equivalent circuits-parameters including noise factor:γ. were 

extracted. Unfortunately, our evaluation structure of 65nm node with different 

finger lengths do not have sufficiently low interconnect resistance from device to 

pad. This results high drain and source resistance as shown in Table 4-3, and 

therefore the lower Ids and gm. 
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Fig.4-1. (a) Schematic top view of MOSFETs .Wf is unit gate finger length and Nf is gate 

finger number. (b) Simplified small-signal equivalent circuit of MOSFET which is 

adopted in this chapter. 

(b) 

Gate  Drain  

gm 

Rd

Rs

Cds

Rds 

Rg Cgd

Cgs

Source  

(a) Wf : gate finger length  



 
 
 
 A Study on High-Frequency Performance in MOSFETs Scaling 
 

 

 73  

Table 4-1 The device parameter for 65nm and 150nm node. 

 

Technology
Vdd
(V)

Lg
(nm)

tox

(nm)
Vth
(V)

150nm 1.5 180 3.0 0.3

65nm 1.2 60 2.2 0.28
 

 

Table 4-2 The variation of device structures. 

 

(a) 65nm node 

Gate length is 60nm and unit gate finger length (Wf) ranges from 0.32µm to 8µm 

 with the same total gate width of 160µm. 

 

gate finger length :Wf (µm) 0.4 0.8 1 1.6 2 3.2 4

gate finger number :Nf 160 80 64 40 32 20 16  

 

(b) 150nm node 

Gate length is 180 nm and unit gate finger length (Wf) ranges from 1µm to 20 µm  

with the same total gate width of 160 µm. 

 

gate finger length :Wf (µm) 1 1.25 2 2.5 4 5 8 10 20

gate finger number :Nf 160 128 80 64 40 32 20 16 8
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Table 4-3 The parameter of the evaluation structure of 65nm node. 

Wtotal Wf Rd_wire Rs_wire
R_wire

total
(µm) (µm) (Ω) (Ω) (Ω)

Evaluation Structure-1 160 0.32-8 0.70 2.00 2.70

Evaluation Structure-2 128 1 0.18 0.23 0.41  

 

 

 

4.3. Small Signal and Noise Characteristics  

 

Small signal and noise characteristics are measured by an on-wafer 

measurement system. 

 

4.3.1 Cut-off Frequency :fT  and Maximum Oscillation Frequency: fmax 

  

   The cut-off frequency (fT) is defined as the frequency where the current 

gain is equal to unity, while the maximum oscillation frequency (fmax) is defined 

as the frequency where power gain is equal to unity. fT and fmax are given below. 

)(2 gdgs

m
T CC

g
f

+
=

π                            (4-1.a) 
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g

sat

L
v
⋅≈

π2
1

                              (4-1.b) 

( ) gdgTsgds

T

CRfRRg
ff

⋅⋅⋅++⋅
=

π22max                (4-2.a) 

gdg

T

CR
f
⋅⋅

≈
π8                                    (4-2.b) 

where gm is the transconductance and Cgs,Cgd are the gate-source capacitance and 

gate-drain capacitance, respectively. gds is the output conductance and Rg ,Rs are 

the gate resistance and the source resistance, respectively. vsat is the saturation 

velocity. 

  The equation (4-1.b) and (4-2.a) indicate that while fT can be increased by 

scaling down the gate length, fmax depends strongly on not only gm and gds but also 

the parasitic components.  

  Figure 4-2 shows the cut-off frequency (fT) of 65nm node as a function of 

drain current compared with that of the 150 nm node n-MOSFET, which is 

measured from Evaluation Stracture-2. Peak fT of 146 GHz is obtained for 65nm 

node, while peak fT of 55 GHz is obtained for 150 nm node. This is expected value 

by Eq.(4-1.b) from 150 nm to 65 nm node. Higher gm value and smaller gate 

dimension provide the high fT value, as demonstrated in Eq.(4-1.a). Figure 4-3 

shows the maximum oscillation frequency (fmax) of 65 nm node as a function of 
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drain current compared with 150 nm node n-MOSFET. Peak fmax of 135 GHz is 

obtained for 65 nm node, while peak fmax of 76 GHz is obtained for 150 nm node.  
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Fig.4-2. The cut-off frequency (fT) of 65 nm node as a function of drain current compared 

with 150 nm node n-MOSFET. Peak fT of 146 GHz is obtained for 65 nm node, while 

peak fT of 55 GHz is obtained for 150 nm node. 
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Fig.4-3. The maximum oscillation frequency (fmax) of 65 nm node as a function of drain 

current compared with 150 nm node n-MOSFET. Peak fmax of 135 GHz is obtained for 65 

nm node, while peak fmax of 76 GHz is obtained for 150 nm node. 

 

 

  The cut-off frequency (fT) and maximum oscillation frequency (fmax) 

measured at the same bias condition of NFmin (see next section) for various 

n-MOSFET are shown in Fig.4-4. Calculated fT and fmax using extracted 

component from the s-parameters with eqs.(4-1a) and (4-2a), are also indicated in 

Fig.4-4. With decreasing of the gate finger length, gate resistance (Rg) decreases. 

However, since the cross-section capacitance of the gate wiring and drain wiring 

increases, gate capacitance (Cgd) increases with finger number. Therefore, fmax 

have optimize point at minimum value of these products (Rg*Cgd) around Wf=1 to 
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2 µm, as shown in Fig.4-5 and Eq.(4-2.b). Maximum fT value of 140 GHz and fmax 

value of 162 GHz are obtained with Wf=1µm and Wf=3.2µm, respectively. 

Calculated fT and fmax using extracted component from the s-parameters are also 

indicated in Fig.4-4. Note that these are not the peak values of fT and fmax . 
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Fig.4-4. Cut-off frequency (fT) and maximum oscillation frequency (fmax) measured at the 

same bias condition of NFmin for various n-MOSFET. Calculated fT and fmax using 

extracted component from the s-parameters is also shown in this figure. 
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Fig.4-5. The dependence of extracted gate resistance (Rg), gate-drain capacitance (Cgd) 

and these products (Rg*Cgd) as a function of gate finger length (Wf) . With decreasing of 

Wf, Rg decreases. However, since the cross-section capacitance of the gate wiring and 

drain wiring increases, Cgd increases with finger number. 

 

 

4.3.2 Noise Figure: NFmin 

  

  Thermal noise is the main noise source of the CMOS device for high 

frequency performance, and is dominated by the channel noise. In chapter 5, more 

detail about noise characteristics is described. Here, the drain channel noise is 
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focused. A figure of merit for the device thermal noise properties is the minimum 

noise figure (Fmin, NFmin) ,which are given below. 

( )sgmgm
T

RRg
f
fF +⋅⋅⋅+= γ21min     (4-3.a) 

m

gm
n

g
R

γ
=       (4-3.b) 

min10min log10 FNF ⋅=      [dB]     (4-3.c) 

 Rn is the equivalent noise resistance, and γgm is so-called drain current excess 

noise factor, and corresponds to noise parameter; P in chapter 5. The power 

spectral density (PSD) of drain current noise, 2
di  in a band-width ∆f is defined by 

the equation [4-8],  

fgkT mgm
di ∆⋅⋅⋅= γ42

     (4-4.a) 

fgkT dogd ∆⋅⋅⋅= 04 γ          (4-4.b) 

where gd0 is the channel conductance at Vds=0. γgm and γgd0 are gm and gd0 

referenced excess noise factor, respectively. The theoretical long-channel value of 

γ is γgm=γgd0= 2/3 in the saturation region [4-9]. However the value of γ become 

greater than 2/3 and γgm≠γgd0 with short channel device [4-10] due to channel 

length modulation [4-11]. In this chapter, gm referenced excess noise factor; γgm is 

used. The equation (4-3.b) indicates that NFmin also depends strongly on the 
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parasitic components and γgm. Fig.4-6 shows measured NFmin versus the 

gate-to-drain voltage (Vgs) of Wtotal=160 µm at 10 GHz. The de-embedding 

techniques based on the noise correlation matrix [4-12] was applied to extract 

intrinsic device characteristics. Minimum NFmin value of 1.06dB is obtained at 

Vgs=0.67 V for 65 nm node. Therefore, our measurement and analysis both of 

small and large signal are performed at this bias point. Figure 4-7 shows the gm 

referenced excess noise factor; γgm as a function of the Vgs compared with 65 nm 

and 150 nm node. The value of γgm=1.59 is obtained at this bias point for 65 nm 

node, while γgm=0.91 for 150 nm node. As scaling continues, the NFmin 

improvement tends to saturate.  

Figure 4-8 indicates the dependence of NFmin and Rn as a function of gate finger 

length (Wf) at 10 GHz. Devices are biased at Vds=1.2 V and Vds=0.67 V. Minimum 

NFmin value is obtained with Wf=1µm at 10GHz. Fig.4-9 shows the optimized gate 

finger length in terms of NFmin and fmax versus technology node. The data from 

Morifuji's analysis [4-6] are also plotted in the figure. 
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Fig.4-6. Measured NFmin value of 65 nm and 150 nm node as a function of the 

gate-to-drain voltage (Vgs) of Wtotal=160 µm at 10 GHz. The device shows the minimum 

value at around Vgs=0.67 V. 
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Fig.4-7. The gm referenced excess noise factor; γgm as a function of the gate-to-source 

voltage (Vgs) compared with 65 nm and 150 nm node. The value of γgm=1.59 is obtained 

at this bias point for 65 nm node, while γgm=0.91 for 150 nm node.
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Fig.4-8. The dependence of NFmin and equivalent noise resistance (Rn) as a function of 

gate finger length (Wf) at 10 GHz. Devices are biased at Vds=1.2 V and Vds=0.67 V. 

Minimum NFmin value of 1.55 dB is obtained with Wf=1 µm.  

0

2

4

6

8

10

0 50 100 150 200 250 300

Gate Length [nm]

G
a
te

 F
in

g
e
r 

L
e
n
g
th

 [
um

]

Optimized for fmax  [Morifuji]
Optimized for NFmin  [Morifuji]
Optimized for fmax (this work)
Optimized for NFmin  (this work)

 

Fig.4-9. The optimized gate finger length in terms of maximum oscillation frequency (fmax) 

and minimum noise figure (NFmin) versus the technology node. The data from Morifuji's 

analysis [4-6] are also plotted.



 
 
 
 A Study on High-Frequency Performance in MOSFETs Scaling 
 

 

 84  

 

4.3.3 Intrinsic gain:  gm/gds 

 

  The intrinsic gain is calculated by dividing transconductance (gm) with 

output conductance (gds). In the velocity saturation, gm scales with the inverse of 

gate oxide thickness (1/tox) as shown in Eq.(4-5.a), while gds increase as Vds/L 

increases due to drain induced barrier lowing (DIBL) as shown in Eq.(4-5.b) 

[4-13]. Therefore, intrinsic gain (gm/gds) is related to L/tox, as shown in Eq.(4-5.c). 

ox

sat
m

t
vWg ∝       (4-5.a) 

L
Vg ds

ds ∝        (4-5.b) 

oxds

sat

ds

m

t
L

V
vW

g
g

⋅⋅∝      (4-5.c) 

Since the scaling of gate oxide thickness: tox cannot be reduced as that of gate 

length:L, the intrinsic gain:gm/gds reduced as scaling continues. Figure 4-10 shows 

the intrinsic gain obtained from the s-parameter as a function of Vgs with 

comparison between the 65nm and 150 nm nodes at 10 GHz. Peak intrinsic gain 

of 14.6 is obtained for 150 nm node, while that of 10.4 for the 65nm node. 
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Fig.4-10. the intrinsic gain as a function of Vgs compared with 65 nm and 150 nm at 

10GHz. Peak intrinsic gain of 14.6 is obtained for 150 nm node, while that of 10.4 for 65 

nm node. 
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4.4. Large Signal and Distortion Characteristics  

 

   Large signal and distortion characteristic are used to describe 

nonlinearities of analog circuits. The large signal and distortion characteristics 

were measured by load-pull system.  

 

4.4.1. Power-Added Efficiency: PAE and Associated Gain: Ga 

 

  The power-added efficiency (PAE) is defined below  

dc

inout

P
PPPAE −

=       (4-6.a) 







 −⋅≈

aG
PAE 110      (4-6.b) 

where Pdc is dc power and Ga is associated gain. At the low frequency limit, in 

which 1/Ga approaches 0, PAE approaches PAE0. PAE0 is 50% in class A 

operation and 79% (= π/4) in class B operation. Using large-signal cut-off 

frequency: fc,ls, Ga is defined as follows: [4-14] 

2
,








=

f
fG lsc

a       (4-6.c) 

max, ff lsc ∝       (4-6.d) 
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fc,ls is almost 30% of the maximum oscillation frequency (fmax) in a HEMT device 

[4-14]. It was also reported that fc,ls is almost 50% of fmax in a 65 nm node CMOS 

device [4-15]. Figure 4-11 shows output power vs. gain and power added gain at 5 

GHz for 65n m and 150 nm nodes, which is measured from Evaluation 

Structure-2. The device reveals an output power of 9.3 dBm and a gain of 11.3 dB 

at a peak PAE of 39.6% for 65 nm node, while an output power of 10.3 dBm and a 

gain of 10.2 dB at a peak PAE of 40.2% for 150nm node. No big difference was 

observed between the 65 and 150 nm nodes because the measurement frequency is 

sufficiently smaller than fmax. Figure 4-12 indicates the dependence of PAE as a 

function of gate finger length (Wf). which are measured at the same bias point in 

the case of noise and small signal measurement; Vds=1.2 V and Vds=0.67 V. Since 

the evaluation structure with different finger lengths (Evaluation Stracture-1) 

have high drain and source resistance, as mentioned before, the lower PAE, gain 

and Pout are obtained as shown in Fig.4-11. Figure 4-12 also indicates the 

estimated line when reducing the resistance by 15%. The highest peak PAE value 

is obtained with Wf=1 µm. The dependency of PAE has a similar trend of fmax, as 

shown in Fig.4-12. 
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Fig.4-11. Output power vs. gain and power added gain at 5 GHz for 65 nm and 150 nm 

nodes. The device reveals an output power of 9.3 dBm and a gain of 11.3 dB at a peak 

PAE of 39.6% for 65 nm node, while an output power of 10.3 dBm and a gain of 10.2 dB 

at a peak PAE of 40.2% for 150 nm node. 
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Fig.4-12. The dependence of peak Power-Added Efficiency (PAE) as a function of unit 

gate finger length (Wf). The highest peak PAE value of 29.8% is obtained with Wf=1 µm. 

The estimated line when reducing the resistance by 15% is also indicated. 
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4.4.2  1dB compression point: P1dB 

 

  The 1dB compression point (P1dB) is defined as the power level at which 

its gain has compressed by 1dB. Output gain is also measured at the P1dB point. 

The transfer characteristics at 5 and 10 GHz for 65 nm node are indicated in 

Fig.4-13. OP1dB of 5.1 dBm with gain of 10.7 dB are obtained at 10 GHz, while 

OP1dB of 3.4 dBm with gain of 26.3 dB at 5 GHz. The P1dB for various gate finger 

length (Wf) was also measured, and the dependency of Wf was not observed. 

 Since IP1dB and third order intercept point :IP3 (See next section) are related by 

[4-16] , 

6.913 += dBPIP   [dB]      (4-7) 

the scaling effect of the distortion characteristics will be discussed in following 

section. 
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 (b) 10GHz 

Fig.4-13. The transfer characteristics at (a)5 GHz and (b)10 GHz for 65 nm node. 
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4.4.3 Third Order Intercept Point: IP3  

 

  Third order intercept point: IP3 test is extracted from measured two-tone 

characteristics to describe nonlinearity. Figure 4-14 demonstrates the measured 

two-tone distortion characteristics for (a)65 nm and (b)150 nm node at 5GHz for 

∆f=1 MHz. IP3 also can be input (IIP3) or output referred (OIP3). Third-order 

intermodulation distortion (IM3) measured by a two-tone test expresses the degree 

of non-linearity of the device, and is given in units of dBc. For low distortion 

operation, IP3 should be as high as possible, and IM3 should be as low as possible. 

OIP3 of 12.8 dBm with IM3 of 12.0 dBc for 65 nm node and 13.4 dBm with 11.5 

dBc for 150 nm node are obtained at 5 GHz. 

 In addition, the third harmonic intercept voltage;VIP3 was measured, which are 

given below. 

3
33 24

3
1

3
1

m

m
hIPiIP

g
gVV ⋅==

3
8

m

m

g
g

⋅=         [V]  (4-8.a) 

where,  
gs

ds
m

V
Ig 3

3

3
∂
∂

=      (4-8.b) 

 

VIP3 is often used to measure the linearity, because it can be easily done with DC 

measurement. The index i of VIP3i is add in order to make a distinction with VIP3h, 
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the 3-rd order intercept point for harmonics [4-17]. Figure 4-15 shows measured 

VIP3 for 65nm and 150nm as a function of Vgs-Vth. Measured OIP3 by load-pull 

system in Fig.4-14 is also indicated. Since gm3 increases in a faster rate than gm, 

the value of VIP3 degrades as technology scaling down as shown in Fig.4-15 [4-18, 

4-19].  
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(a)  65 nm node 
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(b) 150 nm node 

Fig.4-14. Measured two-tone distortion characteristics for (a)65 nm and (b)150nm node 

at 5 GHz for ∆f=1 MHz.
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Fig.4-15. Measured VIP3 for 65 nm and 150 nm as a function of Vgs-Vth. Measured OIP3 

by load-pull system in Fig.4-14 is also indicated. Since gm3 increases in a faster rate than 

gm, the value of VIP3 degrades as technology scaling down. 
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4.5. Conclusion 

 

  The scaling effect of RF characteristics of the 65nm CMOS technology 

compatible with logic CMOS was investigated and compared with that of 150nm 

CMOS. The gate layout effect for the RF performance has been also investigated. 

To better understand the gate layout effect of RF performance, our analysis is 

performed at the same bias condition both of small and large signal measurement. 

  The Summary of RF Characteristics is summarized in Table 4-4. 

  As scaling continues, cut-off frequency (fT) can be increased by scaling 

down the gate length, while maximum oscillation frequency (fmax) and minimum 

noise figure (NFmin) depend strongly on the parasitic components. fT, fmax and 

NFmin have the dependency of gate finger length (Wf). Since the scaling of gate 

oxide thickness: tox cannot be reduced as that of gate length:L, the intrinsic 

gain:gm/gds reduced as scaling continues. 1dB compression point (P1dB) and third 

order intercept point (IP3 ) degrade as technology scaling down, and the 

dependency of Wf was not observed. 

  The results confirm the scaling effect of a comprehensive RF 

characteristics from 150 nm node to 65 nm node CMOS technology. 
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Table 4-4  Summary of RF Characteristics 

unit 150nm 65nm
Finger length

sensitivity

fT cut-off frequency GHz 55 146 v

fmax maximum oscillation frequency GHz 76 135 v

NFmin minimum noise figure(@10GHz) dB 1.66 1.06 v

γgm gm referenced excess noise factor 0.91 1.59 -

gm/gds Intrinsic gain(@10GHz) 14.6 10.4 -

PAE power-added efficiency(@5GHz) % 40.2 39.6 v

Ga associated gain(@5GHz) dB 10.2 11.3 -

P1dB 1dB compression point(@5GHz) dBm - 5.1 -

IP3 3rd-order intercept point(@5GHz) dBm 13.4 12.8 -

v :
－: not sensitive 

parameter

sensitive for gete layout optimizing
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5.1. Introduction 

 

  The downscaling of CMOS technology has resulted in strong improvement 

in RF performance of bulk and SOI MOSFETs [5-1, 5-2]. Owing to the progress 

of the RF performance of smaller geometry MOSFETs, the monolithic integration 

of both RF front-end and baseband circuits is now possible up to 2 or 5 GHz 

frequency regions with the RF mixed signal CMOS technology. Moreover, in the 

research level, even millimeter-wave applications can be implemented in pure 

CMOS process [5-3, 5-4, 5-5].  

In order to realize a low-noise RF circuit, a deeper understanding of the noise 

performance for MOSFETs is required. Thermal noise is the main noise source of 

the CMOS device for high frequency performance, and is dominated by the drain 

channel noise, the induced gate noise, and their correlation noise. Because 

MOSFETs and MESFETs are very similar in their small-signal equivalent noise 

model, one can apply the results of historical studies of high-frequency noise 

behavior of the MESFETs to MOSFETs.  

  In this chapter, the RF noise parameter (Fmin, Rn,Γopt) of 45 nm node 

MOSFETs were measured from 5 to 15 GHz. Then, The noise values ― the 

drain channel noise 2
di , the induced gate noise 2

gi  and their correlation noise 

*
dgii  ―from S-parameters and noise parameters were extracted by using noisy 
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two-port theory. Next, the noise coefficients P, R, and C were extracted by using 

an extended van der Ziel’s model. After that, the extracted noise coefficients of 

the 45 nm node MOSFETs versus frequency, bias condition, and gate length are 

presented. Finally, the effect of noise coefficients on noise figure is discussed.  

 

5.2. Noise Theory 

 

5.2.1. Van der Ziel model 

 

  Van der Ziel, in his pioneering work, first analyzed noise in field-effect 

transistors and formulated the equation of the drain channel noise 2
di  , the 

induced gate noise 2
gi  , and their correlation noise *

dgii  [5-6],[5-7]. The noise 

equivalent circuit of an FET is illustrated in Fig.5-1(a). Baechtold expressed the 

van der Ziel model using drain noise coefficient; P, induced gate noise coefficient; 

R, and their correlation coefficient; C  [5-8]. 

PgfkTi md ⋅⋅∆= 0
2 4         (5-1) 

RgCfkTi mgsg ⋅⋅∆= )/(4 22
0

2 ω       (5-2) 
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PRCCfkTjiiCjii gsdgdg ⋅⋅∆⋅=⋅= ω0
22* 4   

    (5-3) 

where k is the Boltzmann constant, T0 is the lattice temperature, ∆f  is the 

bandwidth, gm is the transconductance, Cgs is the gate-source capacitance, j is the 

imaginary unit and the asterisk defines the complex conjugate. 

  The van der Ziel model shows two important features. 

1) The power spectral density of the drain noise current source, 2
di   is 

frequency-independent. Indeed at high frequency, the noise in FET is diffusion 

noise of the conducting channel and the power spectrum of such a noise is “white” 

in the commonly used operating frequencies. 

2) The real part of the correlation between the gate and drain current noise 

sources, *
dgii  is small as compared with the imaginary part. Therefore the 

complex correlation coefficient is mainly imaginary. 

  These specific features show that FET is a particular noisy two-port; its 

high-frequency noise properties can be calculated using simplified noise models. 
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5.2.2. Pucel’s Noise Model 

 

   According to Pucel’s analysis, the minimum noise figure Fmin and other 

noise parameters of the FET can be given as below [5-9]. 

Cf
fPRCRPF ⋅−++= 221min      

( )
PRCRP

CPRRRg sgm 2
)1( 2

−+
−

++⋅  (5-4.a) 

PRCRP
f
fgg
c

mn 2
2

−+⋅







=    (5-4.b) 

( ) ( )

ωgs

gsm

opt CPRCRP
PRCRP

CPRRRg
Z 1

2
2

1 2

⋅
−+

−+
−

++
=  

 










−+
−

⋅+
PRCRP

PRCP
jCgs 2

1
ω   (5-4.c) 

 

where Rg, Rs are the gate resistance and the source resistance, respectively. fc is 

the intrinsic cut-off frequency (fc=gm/2πCgs),  gn is the noise conductance, Zopt is 
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the optimum input impedance.  If access resistance Rg+Rs tends to zero, 

Eq.(5-4.a) can be simplified as 

 

)1(21 2
min CPR

f
fF
C

−+=      (5-5) 

 

The so-called “Fukui’s equation” is obtained by neglecting induced gate noise 

(R=0), and assuming a correlation coefficient close to unity in Eq.(5-4.a) [5-10, 

5-11, 5-12].  

 

)(1min Sgm
C

f RRg
f
fKF +⋅+= ,   PK f 2=   (5-6) 

 

This equation involves an empirical Fukui's noise figure coefficient Kf, which 

corresponds to P2 . Since Fukui's equation is simple and suggestive, it has been 

widely used in interpretation and modeling of noise properties of GaAs MESFETs 

and more recently in MOSFETs. 
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(a) Simplified equivalent noise circuit 
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(b) Complete equivalent noise circuit 

 

Fig.5-1. Noise equivalent circuits for FETs. 
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5.3. Methodology and Experimental Procedures 

 

  In this chapter, we fabricated multi-finger n-MOSFETs using 45 nm node 

CMOS technology. The gate length ranges from 40 nm to 480 nm and unit gate 

finger length (Wf) is 1 µm with the total gate width of 128 µm to compare the 

noise performance. 

  First, the van der Ziel model is extended to be applicable to short channel 

devices. Figure 5-2 illustrates a gate-source capacitance; Cgs and a gate-drain 

capacitance; Cgd, as a function of gate length for the n-MOSFETs with gate width 

W=128 µm and gate length L = 480 nm, 160 nm, 70 nm and 40 nm, respectively. 

When the gate length decreases, the gate-source capacitance decreases as the gate 

area decreases. On the other hand, gate-drain capacitance, which contains the 

overlap capacitance of the ‘gate to lightly doped drain (LDD)’ region and the 

outer/inner fringing capacitance of the ‘gate to drain’ region, is less affected by 

the gate scaling, and a Cgd is comparable with a Cgs for sub-50 nm device. Since 

the induced gate noise is due to capacitance coupling of drain noise onto the gate 

electrode, one should not neglect the gate-drain capacitance; Cgd. 
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Fig.5-2. The gate-source capacitance; Cgs and the gate-drain capacitance; Cgd, as a 

function of gate length for the n-MOSFETs with gate width W=128 µm and gate length L 

= 480 nm, 160 nm, 70 nm and 40 nm, respectively. 

 

  We can apply the same sort of van der Ziel theory is applied to the 

complete noise equivalent circuit in Fig.5-1(b), and obtain "extended van der Ziel 

model" as below. 

  PgfkTi md ⋅⋅∆= 0
2 4        (5-7) 

  

2

0
2 4 








⋅⋅⋅∆=

T
mg f

fRgfkTi      (5-8)  









⋅⋅⋅∆⋅=

T
mdg f

fPRCgfkTjii 0
* 4    (5-9) 
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where fT is cut-off frequency : fT=gm/2π(Cgs+Cgd). We can also apply the noise 

parameters: P, R, and C to Eqs.(5-4.a) and (5-5). When Cgd << Cgs,  fC = fT and 

the Eqs.(5-7)-(5-9) corresponds to Eqs.(5-1)-(5-3).  

  Next, the RF noise parameter (minimum noise figure Fmin, equivalent noise 

resistance Rn, and the optimized source reflection coefficient Γopt) were measured 

from 5 to 15 GHz and the de-embedding techniques based on the noise correlation 

matrix [5-13],[5-14] were applied to extract intrinsic device characteristics. These 

noise parameters were extracted from fitting noise circles to the measured NF 

values of at least 5 mechanical-tuner positions, each of 64 points averaging. After 

the noise parameters of two-port devices are specified, the drain channel noise 2
di , 

the induced gate noise 2
gi  and their correlation noise *

dgii  are obtained as 

follows [15],[16] ; 

2
210

2 4 YRfkTi nd ⋅∆=                                     (5-10) 

( )[ ]{ }*
1111

2
11

2

0
2 24 YYYYYRfkTi coroptng −ℜ+−⋅∆=     

 (5-11) 

( ) *
21110

* 4 YRYYfkTii ncordg −∆=   .                      (5-12) 

where ℜ [ ] denotes the real part of [ ] , Yopt is the optimal source admittance, and 

Ycor is the correlation factor given by  
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  .                opt
n

cor Y
R

FY −
−

=
2

1min
                        (5-13) 

 

  Next, the noise coefficients P, R, and C were extracted by comparing 

equations with (5-10)-(5-12) and extended van der Ziel’s model (5-7)-(5-9). After 

that, the extracted noise coefficients of the 45 nm node n-MOSFETs versus 

frequency, bias condition, and gate length are presented and the effect of noise 

coefficients on the noise figure is discussed. 

 

5.4. Experimental Results and Discussions 

 

  Figure 5-3 shows the extracted drain noise 2
di , gate induced noise 2

gi , and 

their correlation noise *
dgii  versus frequency characteristics for n-MOSFETs 

with gate width W=128 µm and gate lengths L=40 nm biased at Vds=1.2 V and 

Vgs=1.0 V.  It was confirmed that 2
di  is independent of frequency, that 2

gi  

increases in proportion to frequency-squared, and that *
dgii  increases in 

proportion to frequency, as van der Ziel model described. Therefore, the dominant 

component of the 2
gi  can be considered as the noise due to the gate resistance and 

the shot noise induced by the gate leakage current can be negligible within the 

measured frequency range. 
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  Figure 5-4 indicates the 2
di , 2

gi , and *
dgii  as a function of gate length for 

the n-MOSFETs with gate width W=128 µm and gate length L = 480 nm, 160 nm, 

70 nm and 40 nm, respectively, biased at Vds = 1.2 V and Vgs=1.0 V at 10 GHz. It 

is shown that the drain channel noise increases when the gate length decreases. 

When the gate length decreases, both the induced gate noise and the correlation 

noise also decrease from L=480 nm to 160 nm.  
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Fig.5-3. The extracted drain noise 2
di  , gate induced noise 2

gi  , and their correlation 

noise *
dgii    versus frequency characteristics for n-MOSFETs with gate width W=128 

µm and gate lengths L=40 nm biased at Vds=1.2 V and Vgs=1.0 V. 
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Fig.5-4. The 2
di   , 2

gi  , and *
dgii   as a function of gate length for the n-MOSFETs with 

gate width W=128 µm and gate length L = 480 nm, 160 nm, 70 nm and 40 nm, 

respectively, biased at Vds = 1.2 V and Vgs=1.0 V at 10 GHz. 

   

This trend is in agreement with the measurement results of L=970 nm to 180 nm 

for 0.18 µm CMOS in [5-17], and L=250 nm to 70 nm in [5-18]. On the other 

hand, it is noted that 2
gi  is saturated and *

dgii  increases when the gate length 

decreases from L=70 nm to 40 nm, as can be seen in Fig.5-4. Since it was 

confirmed that noise coefficients are independent of frequency, the details of 

frequency dependence were not indicated hereafter.  
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  Figure 5-5 indicates the noise coefficients P, R, and C, which are extracted 

by Eqs (5-7)-(5-9) and (5-10)-(5-12), as a function of gate length for the same 

device parameters as for Fig.5-4, biased at Vds =1.2 V at 10 GHz. In fact, several 

papers have reported that the correlation noise coefficient C is a positive value, 

and decreases when the gate length is reduced [5-17, 5-19]. It was found, for the 

first time, that C decreases from positive to negative values when the gate length 

is reduced continuously, and it thus follows that the gate length dependence of the 

correlation noise *
dgii  has an inflection point around L=70 nm, as can be seen in 

Fig.5-4.  In addition, this trend can be explained by the simulation results that the 

absolute value of C increases when the gate length is reduced [5-19, 5-20]. Let Lc0 

be the gate length where the correlation noise coefficient C equals zero. It seems 

that Lc0 of 45 nm node n-MOSFETs exists within 70 nm to 40 nm, as can be seen 

in Fig.5-5.  



 
 
 
 A Study on High-Frequency Performance in MOSFETs Scaling 
 

 

 117  

0.1

1.0

10.0

0.001 0.01 0.1

1/(Gate Length)[nm^-1]

N
o
is

e
 C

o
e
ff
ic

ie
n
t 
; 
P
, 
R
, 
C

-1

-0.5

0

0.5

1

P

R
C

n-MOSFET
W=128um
Wf=1um

Vds=1.2V
Vgs=1.0V

← P C →

← R

freq.=10GHz

↑
40nm

↑
160nm

↑
480nm

↑
70nm

 

Fig.5-5. The noise coefficients P, R, and C ,which are extracted by Eqs. (5-7)-(5-9) and 

(5-10)-(5-12), as a function of gate length for the same device parameters as for Fig.5-4 

at 10 GHz. 

 

 

  The gate noise coefficient R increases sharply when the gate length is 

reduced.  While the induced gate noise 2
gi  is two orders of magnitude lower 

than that of drain channel noise 2
di  for L=40 nm, the gate noise coefficient R is 

obtained two times as large as the drain noise coefficient P. Since the cut-off 

frequency: fT is around 200 GHz , the value of (f /fT)2 is around 1/400 at f=10 GHz 

in Eq.(5-8). This is because R is comparable with P. Therefore, it is obvious that 
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one should not neglect the gate noise and the correlation noise in short-channel 

MOSFET noise analysis. 
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(b) The induced gate noise coefficient; R. 
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(c) The correlation coefficient; C. 

 

Fig.5-6. The noise coefficients P, R, and C as a function of Vgs for the same device 

parameters as for Fig.5-4, biased at Vds = 1.2 V at 10 GHz . 

 

  Figure 5-6 shows the noise coefficients P, R, and C as a function of 

gate-to-source voltage Vgs for the same device parameters as for Fig.5-4. It is 

shown that the induced gate noise coefficient R has a strong bias dependence, 

especially in the case of L=40 nm, but the drain noise coefficient P and the 

correlation noise coefficient C have a weak bias dependence. C decreases, namely 

the absolute value of C  increases where the pinch-off region accounts for a big 

part of the channel at low currents[5-21], especially in the case of L=40 nm and 70 

nm. 
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Fig.5-7. The minimum noise figure measured and calculated from noise coefficients P, R, 

and C versus the drain current with gate width W=128 µm and gate lengths L=40 nm 

biased at Vds =1.2 V at 5,10,15 GHz, respectively. 

 

  A comparison between noise figure measured and calculated from noise 

coefficients versus drain current is shown in Fig.5-7, with gate width W=128 µm 

and gate lengths L=40 nm under bias conditions at Vds = 1.2 V at 5, 10, and 15 

GHz, respectively. The Fukui's equation predicts lower noise figure than the data 

measured due to neglecting induced gate noise, and access resistance, Rg+Rs, close 

to zero for 45 nm node n-MOSFET.  
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  It was confirmed that Pucel's equation (5-4.a), using noise coefficients P, 

R, and C from extended van der Ziel model, can be considered a good 

approximation even for sub-50 nm MOSFETs. 
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Fig.5-8. The factors of noise figure for Eq.(5-5). 

 

  In addition, the influence of noise coefficients P, R, and C on the minimum 

noise figure is examined. Figure 5-8 shows the factors of noise figure for Eq.(5-5). 

Since fT and the factor ( )21 CPR −  is proportional to 1/L when Lc0 >L , the 

factor ( ) TfCPR 21−  is saturated.  Lc0 also indicates the saturation point of 

minimum noise figure.  
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  It was confirmed that Lc0 plays a very important role in the determination 

of the saturation point of minimum noise figure at fixed bias point, as shown in 

Fig.5-8. 
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5.5. Scaling Effect on the Minimum Noise Figure 

 

  Recently, several approaches have been presented to formulate an 

analytical expression for thermal noise in short-channel MOSFETs [5-22～5-25]. 

Triantis' noise model is based on the consideration that the channel of MOSFETs 

is separated into two consecutive regions; a gradual channel approximation region 

and a velocity saturation region [5-22, 5-23]. This approach is 

phenomenologically equivalent in [5-26]. Triantis' model is expressed by only DC 

parameters. In this section, the detail of Triantis’ model is explained and a scaling 

effect of the noise coefficients is discussed, especially the correlation noise 

coefficient C on the minimum noise figure. 

 

5.5.1 Triantis' Noise Model 

 

  Triantis' approach that has been followed for the analytical modeling of the 

thermal noise, is based on the consideration that two consecutive regions exist 

between the source and drain of a saturated short-channel MOSFET ,as shown in 

Fig.5-9. These regions are as follows: 

   Region-1: a gradual channel approximation region  

   Region-2: a velocity saturation region 
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Fig.5-9. Schematic representation of the channel separation of a submicron MOSFET 

into a gradual channel approximation region-1 and a velocity saturation region-2 

 

(1) The drain current 

 

According to [5-22] and [5-23], the thermal noise of the drain current of a short 

channel MOSFET is efficiently calculated, as follows. 

fgP
A
EALP

I
Tki dsD

C
SATD

ds

B
d Δ⋅






 +×= 2

2
2

1
02 )(cosh

3
24 α

α   

 (5-14) 

where A is a function of the gate oxide thickness and the substrate doping [see 

Eq.(5-25)], LSAT is the length of the velocity saturation region, which is so-called 

"pinch-off length", dsi  is the drain current, dsg  is the channel's conductance, 
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α  is a constant near unity and accounts for the channel charge effect on the 

threshold voltage [5-27]. 

 

The polynomial PD1 of the drain current noise originating in region-1 is; 
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while PD2 for region-2 noise is  

( ) ( )[ ]SATSATSATD ALALPALPP coshsinh2 102 −= ,   (5-16) 

where P0 and P1 are given by Taylor series form and the first four terms taken into 

consideration, as follows. 

( )04
66

03
44

02
22

010 pLApLApLApeP SATSATSAT +++= λ
  (5-17) 

32
01 151831 λλλ +++=p        

32
02 5.795.1 λλλ ++=p        

32
03 62.075.0 λλ +=p        

 ( )32
04 02.0 λλ +=p         

( )13
44

12
22

111 pLApLApeP SATSAT ++= λλ     (5-18) 

2
11 15183 λλ ++=p        

2
12 5.2333.0 λλ ++=p        
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2
13 125.0125.01 λλ ++=p       

 

δ  is an empirical constant which turn out to be in the range of 5 - 20 for values 

of Ec in the range of 2-4 V/µm . Parameters δ  and λ  are not independent but 

they follow the relation 12 −= λδ e . 

 

(2) The gate noise current 

 

According to [5-23], the total gate noise current caused by region-1 and region-2 

is 
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where the quantity PG1 is primarily a function of VGT=VGS - VTH .  

PG1 is calculated as; 
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where W is channel width , Cox is the gate capacitance per unit area, Lc is the 

length of region-1: SATeffC LLL −=  , β  accounts for the potential at the end 

of region-1 ,  Ec is the electric field at CLx = . The quantities V0, V1, V3 are 

respectively: CGT VVV α−=0  , CGT VVV α+=1  , and 

CC LEVVV 0
2

13 2α+=  with THGSGT VVV −= . 

  The quantity PG2 is equal to 2
2

12 DG PPP α=  where PD2 is a component 

of the noise originating in region-2 and is given below. 
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(3)  The cross correlation coefficient 

 

The cross correlation coefficient for 2
di ,and 2

gi  is given by: 
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  (5-22) 

 

The quantity PGD1 is calculated as  

011
2

1
23

131 kVkVLVkP CGD +++= β       (5-23) 

013 VLPk Cβ−=  , ( )01
2

01 3 VLPVk Cβδ −=       

( ) 322
0

2
1

2
1

3
0

4
00 12)63(13 CCCCC LEVPELPVVLk βαδβαδδβ −+−−+=   

and finally, 212 DGD PPP = . 
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5.5.2. Scaling Effect on the Correlation Noise Coefficient  

 

  The gate induced noise 2
gi , and correlation noise *

dgii  from measurement 

DC data of 45 nm node n-MOSFETs were calculated using Triantis’ model. A 

comparison between noise sources measured and calculated from Triantis' model 

versus gate length is shown in Fig.5-10. While the data measured and calculated 

show a large deviation, it was confirmed that 2
gi  and *

dgii  have the inflection 

points both of measurement data and Triantis' model at the same gate length.  

  An influence of each factor for Triantis' model is examined, and it turned 

out that the parameter in the velocity saturation region, named PD2, plays an 

important role in the determination of inflection points.  
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L

PP coshsinh2 102   (5-24) 

When PD2=0 in Eq.(5-24), both of 2
gi  and *

dgii  reach the inflection points, and 

the correlation coefficient C=0. Figure 5-10 indicates the dependence of LSAT as a 

function of gate length for the n-MOSFETs with gate width W=128 µm and gate 

length L= 480 nm, 230 nm, 160 nm, 110 nm, 70 nm and 40 nm, respectively, 

biased at Vds = 1.2 V and Vgs=1.0 V. When the gate length is reduced, LSAT is also 

reduced, and the ratio of LSAT (LSAT/Lg) increases conversely. The pinch-off length 

accounts for 22% of the gate length with L=40 nm, as shown in Fig.5-11. P0 and 
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P1 are the quantities with respect to the noise temperature given in [5-23], and less 

relevance to technology node.  

  On the other hand, the parameter lt  has strong relevance to technology 

node as follows [5-28] ; 

oxj
SiO

Si
t txl ⋅⋅=

2ε
ε

      (5-25) 

tl
A 1
=          

where xj is the junction depth, tox is gate-oxide thickness ,εox and εsio2 is dielectric 

permittivity of SiO2 and Si , respectively.  

  Substituting PD2 for zero in Eq.(5-24), we can obtain  

1tanh
1

0
=
















⋅

t

SAT

SAT

t

l
L

L
l

P
P

 .    (5-26) 

  Figure 5-11 shows the left terms of Eq.(5-26) for 45 nm and 65 nm node 

CMOS, biased at Vds=1.2 V and Vgs=1.0 V. The value of Lc0, which is the gate 

length where the correlation noise coefficient C equals zero, can be determined by 

the left term equals to 1. The left term is strongly relevance to technology node 

due to the parameter lt. As scaling continues, Lc0 is reduced as can be seen in 

Fig.5-12.  
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Fig.5-10. A comparison between noise sources measured and calculated from Triantis' 

model versus gate length:  (a) Induced gate noise : 2
gi   (b) Correlation noise : *

dgii .  
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Fig.5-11. The dependence of pinch-off length LSAT and the ratio of LSAT (LSAT/Lg) as a 

function of gate length for the n-MOSFETs with gate width W=128 µm and gate length L 

= 480 nm, 230 nm, 160 nm, 110 nm, 70 nm and 40 nm, respectively, biased at Vds = 1.2 V 

and Vgs=1.0 V. 

 

 

  The values of LC0 are estimated as 70 and 120 nm for 45 and 65 nm nodes, 

respectively. It was pointed out in the previous section that Lc0 indicates the 

saturation point of minimum noise figure. In the case of sub-micron technology 

node which has the positive correlation coefficient C, the minimum allowed gate 

length Lmin is larger than Lc0, and the lowest value of the minimum noise figure is 

obtained at Lmin. On the other hand, for sub-100nm node, since the correlation 
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coefficient C reaches zero before the gate length is larger than Lmin, it does not 

necessarily follow that the lowest value of the minimum noise figure is obtained at 

Lmin. One should have a careful attention for selection of device geometries to 

design low noise amplifier and maximize noise performance. 
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Fig.5-12. The left term of Eq.(5-26) for 45 nm and 65 nm node CMOS, biased at Vds=1.2 

V and Vgs=1.0 V. Lc0, which is the gate length where the correlation noise coefficient C 

equals zero, can be determined by the left term equals to 1. 
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5.6. Conclusion 

 

  In this chapter, the RF noise parameter (Fmin, Rn, Γopt) of 45 nm node 

MOSFETs were measured from 5 to 15 GHz and extracted noise sources and 

noise coefficients P, R, and C by using an extended van der Ziel’s model. It was 

found, for the first time, that correlation coefficient C decreases from positive to 

negative values when the gate length is reduced continuously with the gate length 

of sub-100nm. It was confirmed that Pucel's noise figure model, using noise 

coefficients P, R, and C, can be considered a good approximation even for sub-50 

nm MOSFETs. A scaling effect of the noise coefficients is also discussed, 

especially the correlation noise coefficient C on the minimum noise figure. It was 

confirmed that Lc0, which is the gate length where the correlation noise coefficient 

C equals zero, indicates the saturation point of minimum noise figure. 
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6.1. Introduction 

 

  The downscaling of CMOS technology has resulted in strong improvement 

in RF performance of MOSFETs. In order to realize a low-noise RF circuit, a 

deeper understanding of the noise performance for MOSFETs is required. 

Thermal noise is the main noise source of the CMOS device for high frequency 

performance, and is dominated by the drain channel noise, the induced gate noise, 

and their correlation noise. Since the minimum noise figure is small value in unit 

of dB for the sub-50nm device, the equivalent noise temperature representation 

can be useful to evaluate the noise performance.  

  In this chapter, a novel representation of the thermal noise for equivalent 

noise temperature was proposed by applying an extended van der Ziel’s model. 

The noise temperatures of the 45 nm node n-MOSFETs versus gate length were 

extracted. A comparison between the proposed representation and Pospieszalski's 

model is also performed. Finally, a physical validity of proposed representation 

for equivalent noise temperature are discussed, especially for drain noise 

temperature, Td.  

 



 
 
 
 A Study on High-Frequency Performance in MOSFETs Scaling 
 

 

 143  

6.2. Equivalent Noise Temperature Model 

 

  Van der Ziel, in his pioneering work, first analyzed noise in field-effect 

transistors and formulated the equation of the drain channel noise 2
di  , the 

induced gate noise 2
gi  , and their correlation noise *

dgii  [6-1, 6-2]. In chapter 5 

[6-3], the van der Ziel model have been extended to be able to apply it to short 

channel devices. In this chapter, a novel representation for equivalent noise 

temperatures is proposed by corresponding to the "extended van der Ziel model" 

and the Nyquist theorem . 

 

6.2.1 Equivalent noise temperature 

 

  The noise temperature is a means for specifying noise in terms of an 

equivalent temperature. Note that the equivalent noise temperature Tn is not the 

physical temperature of the device, but rather a theoretical construct that is an 

equivalent temperature that produces that amount of noise power. The noise 

temperature is related to the noise factor by: [6-6], 

( )1min0 −= FTTn       (6-1.a) 

We can also define noise factor and noise figure in terms of noise temperature: 
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1
0

min +=
T
TF n

       (6-1.b) 

 

6.2.2 Nyquist theorem 

 

  According to Nyquist theorem [6-4], thermal noise current of a 

conductance g at the absolute temperature T0 in a frequency interval ∆f can be 

represented as below. 

( )fpgfkTi ⋅⋅∆= 0
2 4        (6-2) 

Equation (6-2) is the generalized Nyquist theorem, and p(f) is the quantum 

correction factor at frequency given by   

( ) ( ) 1/exp
1

−
=

kThfkT
hffp       (6-3) 

Even f= 1THz in Eq.(6-3), hf/kT << 1.  Therefore the quantum correction factor 

p(f) is about equal to unity at the microwave and millimeter wave region, as 

below.   

gfkTi ⋅∆= 0
2 4         (6-4) 
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6.2.3 Pospieszalski's model 

 

  Pospieszalski has proposed two-parameter-noise model, in which it was 

assumed that the gate noise voltage source was not correlated with the drain noise 

current source [6-7, 6-8]. The noise equivalent circuit of Pospieszalski's model is 

illustrated in Fig.6-1(b).  Pospieszalski's model is described by two equivalent 

noise temperatures, which are frequency independent constant, as below.  

fRkTe ipgg ∆⋅⋅= ,
2 4           (6-5) 

fgkTi dspdd ∆⋅⋅= ,
2 4         (6-6) 

0* =dg ie            (6-7) 

where 2
ge  is the gate noise voltage source, 2

di  is the drain noise current source, 

Ri is the effective channel resistance, gds is the output conductance. Td,p and Tg,p 

are the drain and the gate equivalent temperature, respectively. The equivalent 

noise temperature for Pospieszalski's model is given by 

idspgpd
T

p RgTT
f
fT ⋅⋅⋅= ,,min, 2  .    (6-8) 

This model shows a good agreement over a wide frequency range between the 

measured noise parameters and those predicted for HEMT and MESFET. 

 

6.2.4 Novel Representation for Equivalent Noise Temperatures  
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  In this chapter, a novel representation for equivalent noise temperatures 

was proposed by corresponding to the "extended van der Ziel model" (5-7)-(5-9) 

and the Nyquist theorem (6-4) , as follows. 

mdd gfkTi ⋅∆⋅= 42
        (6-9) 

mgg gfkTi ⋅∆⋅= 42
        (6-10) 

mgddg gfTkjii ⋅∆⋅∆⋅⋅= 4*
         (6-11) 

where k is the Boltzmann constant, ∆f is the bandwidth, gm is the 

transconductance, j is the imaginary unit and the asterisk defines the complex 

conjugate. Td is equivalent drain noise temperature, Tg is equivalent gate noise 

temperature and ∆Tgd is their correlation noise temperature, which defined by 

0TPTd ⋅=         (6-12) 

 

2

0 







⋅⋅=

T
g f

fTRT         (6-13) 









⋅⋅=∆

T
gd f

fTPRCT 0  ,        (6-14) 

where P is drain noise coefficient, R is induced gate noise coefficient, C is their 

correlation coefficient, T0 is the lattice temperature and fT is cut-off frequency. It 

has been found that C decreases from positive to negative values when the gate 
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length is reduced continuously to sub-100nm [6-3]. This is because the correlation 

noise temperature is expressed "∆Tgd". According to Pucel’s analysis [6-5] and the 

representation of the noise temperature [6-6], we can obtain equivalent noise 

temperature, Tmin, as below. 

( )2min 2 gdgd TTTT ∆−⋅=       (6-15) 

  Equation (6-15) is a novel representation for equivalent noise temperature, 

which is useful to understand the contribution of each noise source. 
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(b) Equivalent noise circuit for Pospieszalski’s model 

 

 

Fig.6-1. Noise equivalent circuits for FETs. 
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6.3. Experimental Procedures and Results 

 

  In this chapter, we fabricated multi-finger n-MOSFETs using 45 nm node 

CMOS technology. The gate length ranges from 40 nm to 480 nm and unit gate 

finger length (Wf) is 1 µm with the total gate width of 128 µm to compare the 

noise performance. Next, the RF noise parameter (minimum noise figure Fmin, 

equivalent noise resistance Rn, and the optimized source reflection coefficient Γopt) 

were measured from 5 to 15 GHz at T0=300 K and extracted noise temperature Td, 

Tg, ∆Tgd and Tmin from Eqs.(6-12)- (6-15). 

Figure 6-2 shows the extracted Td and Tg versus frequency characteristics for 

n-MOSFETs biased at Vds=1.2 V and Vgs=1.0 V. It was confirmed that Td is 

independent of frequency, and that Tg increases in proportion to 

frequency-squared, as Eqs.(6-12) and (6-13).  

  Figure 6-3(a) indicates the extracted Td, Tg, and Tmin from 

Eqs.(6-12),(6-13), and (6-15) with measured Tmin as a function of gate length for 

the n-MOSFETs biased at Vds = 1.2 V and Vgs=1.0 V at 10 GHz. It is shown that 

Td increases and Tg decreases when the gate length decreases. Tg of 225 K was 

obtained for L= 480 nm, and Tg of 4 K was obtained for L= 40 nm, which was a 

very "cold" temperature due to a factor of (f/fT)2 in Eq.(6-13). Figure 6-3(a) also 

indicates the extracted Td,p, Tg,p, and Tmin,p from Pospieszalski's model. It is noted 

that both Td,p and Tg,p of this model increase when the gate length decreases, and 
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that Td,p is an order of magnitude higher than that of the proposed Td. In the case 

of L= 40nm, Td of 634 K was obtained for our representation, while Td,p of 13,000 

K was obtained for Pospieszalski's model. Figure 6-3(b) indicates the extracted 

∆Tgd from Eq.(6-14). ∆Tgd decreases from positive to negative values when the 

gate length is reduced, corresponding to the correlation coefficient; C. 

To our best knowledge, the noise temperature of MOSFETs by Pospieszalski's 

model has not been reported. It was confirmed that the Eq.(6-15) can be 

considered a good approximation even for sub-100nm, while the Pospieszalski 

model predicts a deviation from the data measured.  
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Fig.6-2. The extracted drain noise temperature, Td and gate noise temperature, Tg from 

Eqs.(6-12)-(6-13) versus frequency characteristics for n-MOSFETs with gate width 

W=128 µm and gate length L = 480 nm, 160 nm, 70 nm and 40 nm, respectively, biased 

at Vds=1.2 V and Vgs=1.0 V. 
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Fig.6-3. (a) The extracted Td, Tg, and Tmin from Eqs.(6-12),(6-13), and (6-15) with 

measured Tmin as a function of gate length for the n-MOSFETs biased at Vds = 1.2 V and 

Vgs=1.0 V at 10 GHz. It also indicates the extracted Td,p, Tg,p and Tmin,p from 

Pospieszalski's model.  (b) The extracted ∆Tdg from Eq.(6-14) with measured Tmin as a 

function of gate length for the n-MOSFETs with gate width W=128 µm.
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6.4. Discussions 

  Here, a physical validity of our representation for equivalent noise 

temperature is discussed, especially for the drain channel noise temperature, Td. 

Recently several studies have reported full 2-D noise simulation results in a 

drift-diffusion (DD) and a hydrodynamic (HD) based device simulator [6-9～

6-12]. It is demonstrated that channel thermal noise in MOSFETs is mainly due to 

cold or warm electrons in a gradual channel region, and that the contribution of 

hot electrons in a velocity saturation region is found to be negligible. At high 

electric field in short channel MOSFETs, the electron temperature, Te depends on 

the electric field along the channel, as below [6-6]. 

2

0
)(1 





 +=

Ec
xETTe       (6-16) 

where Ec is a critical field, E(x) is an electric field at channel position; x ,as 

below[6-13]. 

( )[ ] xEaVVVV

EVxE
cthgs

C

0
2

0

0

42
)(

−−−

⋅
=     (6-17) 

( ) satthgs VaVVV ⋅−−=0        

  Figure 6-4(a) indicates the electron temperature, Te as obtained by the data 

measured and Eq.(6-16), where the gate begins at source and ends at pinch-off 

point; Lc. It was confirmed that the representation (6-12) of Td corresponds to the 
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electron temperature in a gradual channel region, as shown in Fig.6-4(b). It calls 

for further investigation that the physical validities of equivalent gate noise 

temperature (6-13) and the correlation noise temperature (6-14) by DD and HD 

simulations. 
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6.5. Conclusion 

 

  In this chapter, a novel representation for equivalent noise temperature was 

proposed, which is useful to understand the contribution of each noise source. A 

comparison between the proposed representation and Pospieszalski's model is also 

performed. It was confirmed that the representation of drain noise temperature, Td 

corresponds to the electron temperature in a gradual channel region.  
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Fig.6-4. (a)The electron temperature as obtained by the data measured and Eq.(6-16), 

where the gate begins at source and ends at Lc. (b)The drain noise temperature, Td for 

Eq.(6-12) and the electron temperature, Te at the source end.
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Chapter.7 

Conclusions 
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  In Chapter 7, the studies referred to in this thesis are summarized and their 

importance is described. 

 

1) Proposal of Layout optimization for RF-MOSFETs 

 

  In Chapter 3, a Mesh-Arrayed MOSFET with ring-shaped gate electrode 

for high-frequency analog application has been described. The dependence of 

noise figure and maximum oscillation frequency on parasitic components in 

MA-MOS configuration has been discussed. The MA-MOS realizes low noise 

figure of 0.6 dB at 2 GHz and high fmax of 37 GHz, using a non-salicide 0.25 µm 

CMOS technology. 

The MA-MOS is the most practical candidate to realize low cost and high 

performance one-chip RF Baseband CMOS LSI. 

 

2) Scaling effect of a comprehensive RF characteristics from 150nm node to 65nm 

node CMOS technology 

 

   In Chapter 4, the scaling effect of RF characteristics of the 65nm CMOS 

technology compatible with logic CMOS was investigated and compared with that 

of 150nm CMOS The gate layout effect for the RF performance has also been 

investigated. To better understand the gate layout effect of RF performance, our 
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analysis is performed at the same bias condition both of small and large signal 

measurement. 

  As scaling continues, cut-off frequency (fT) can be increased by scaling 

down the gate length, while maximum oscillation frequency (fmax) and minimum 

noise figure (NFmin) depend strongly on the parasitic components. fT, fmax and 

NFmin have the dependency of gate finger length (Wf). 

  Since the scaling of gate oxide thickness: tox cannot be reduced as that of 

gate length:L, the intrinsic gain:gm/gds reduced as scaling continues. 

 1dB compression point (P1dB) and third order intercept point (IP3 ) degrade as 

technology scaling down, and the dependency of Wf was not observed. 

  The results confirm the scaling effect of a comprehensive RF 

characteristics from 150nm node to 65nm node CMOS technology. 

 

3) Scaling effect of noise sources of 45nm node MOSFETs 

 

  In Chapter 5, the RF noise parameter (Fmin, Rn, Γopt) of 45 nm node 

MOSFETs were measured from 5 to 15 GHz and the noise sources and noise 

coefficients P, R, and C were extracted by using an extended van der Ziel’s 

model. It was found, for the first time, that correlation coefficient C decreases 

from positive to negative values when the gate length is reduced continuously with 

the gate length of sub-100 nm. It was confirmed that Pucel's noise figure model, 
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using noise coefficients P, R, and C, can be considered a good approximation 

even for sub-50 nm MOSFETs. A scaling effect of the noise coefficients is also 

discussed, especially the correlation noise coefficient C on the minimum noise 

figure. It was confirmed that Lc0, which is the gate length where the correlation 

noise coefficient C equals zero, indicates the saturation point of minimum noise 

figure. 

 

4) Proposal of a novel representation for equivalent noise temperature 

 

  In Chapter 6, a novel representation for equivalent noise temperature was 

proposed, which is useful to understand the contribution of each noise source. A 

comparison between the proposed representation and Pospieszalski's model is also 

performed. It was confirmed that the representation of drain noise temperature, Td 

corresponds to the electron temperature in a gradual channel region.  

 

 

  In conclusion, the studies referred to in this thesis were useful in the 

progress of RF-MOSFET technology, and they are also expected to contribute to 

the future progress of MOSFETs technology for high-level integration and high 

frequency commercial products. 
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