Metal Inserted Poly-Si Stacks with La₂O₃ Gate Dielectrics for Scaled EOT and V_{FB} Control by Oxygen Incorporation

<u>T. Kawanago</u>^a, K. Kakushima^b, P. Ahmet^a, K. Tsutsui^b, A. Nishiyama^b, N. Sugii^b, K. Natori^a, T. Hattori^a and H, Iwai^a

a. Frontier Research Center b. Interdisciplinary Graduate School of Science and Engineering Tokyo Institute of Technology

Event, Venue information

Outline

- Direct contact high-k/Si Structure
- MIPS stacks for scaled EOT with La₂O₃ dielectrics
- C-V characteristics of MOS capacitors
- Flatband voltage control by oxygen incorporation
- Conclusions

Scaling issue in high-k gate dielectrics

semi

SiO₂ interfacial layer inserted or re-grown for

- recovery of degraded mobility
- interface state, reliability (TDDB, BTI), etc.

SiO₂-IL free structure (direct contact of high-k/Si) is required for EOT=0.5nm

Reports on direct contact of high-k/Si

Motivation & Objective

semi

- Improvement of interfacial property at high-k/Si interface is essential
- V_{FB} tuning is also important issue in high-k /metal gate stacks

How to improve interfacial property accompanied by scaled EOT with La_2O_3 dielectrics

 V_{FB} control by oxygen incorporation

Problems for scaled EOT with La₂O₃

Strategy & Concept

💪 semi

Oxygen trigger the silicate reaction

Experimental procedure

C-V characteristics ~TiN/W~

semi

2011-3-23

Event, Venue information

C-V characteristics ~MIPS~

semi

2011-3-23

Event, Venue information

Comparison of C-V characteristics

Effect of gate metal structure on EOT

semi

Event, Venue information

Oxygen incorporation through TiN/W

Oxygen incorporation after Si removal

Conclusions

- MIPS with high temperature annealing is extremely effective to improve interfacial property accompanied by scaled EOT simultaneously
- Close to the ideal C-V curve with EOT of 0.69nm can be achieved
- Oxygen incorporation after Si removal yields positive
 V_{FB} shift by 490mV while EOT penalty is less than 1Å

Acknowledgements

semi

This study was supported by New Energy and Industrial Technology Development Organization (NEDO), and Grant-in-Aid for research fellows of Japan Society for the Promotion of Science (JSPS).

Thank you for your attention!