## **SOI opportunities** to speed up, save energy and memorize

IMEP-LAHC

### Sorin Cristoloveanu

#### Institute of Microelectronics, Electromagnetism and Photonics MINATEC, Grenoble, France

#### Many thanks to:

K-I. Na, W. Van Den Daele, L. Pham-Nguyen, M. Bawedin, K-H. Park, J. Wan, K. Tachi, S-J. Chang, I. Ionica, Y-H. Bae, J.A. Chroboczek, C. Fenouillet-Beranger, A. Ohata, T. Ernst, E. Augendre, C. Le Royer, A. Zaslavsky, H. Iwai, + L. Faraone, J. Antoszewski, F. Allibert, C. Mazuré, H. Hovel

**Grenoble SOI Mafia : SOITEC, IMEP, LETI, STMicroelectronics** 



- Context: why SOI, what for, how good...?
- SOI technology and advanced boosters
- A few memories: SOI 1T-DRAMs
- Conclusions



- SOI is GREEN: power & voltage saving
- SOI is versatile: new devices



# **CMOS and SOI Evolution**



# 

## **SOI for Portable Devices**

#### Notebook PC + Smartphone Shipments Dwarf Desktop Consumers Increasingly Prefer Portability



#### **Market evolution**

Predictions from Morgan Stanley, December 2009



# **Power Inflation**

# Power consumption tends to increase with scaling:

- The circuit density increases: more devices per mm<sup>2</sup>
- The clock frequency increases: more activity per mm<sup>2</sup>
- The leakage current increases in shorter transistors

#### More power means:

- The chip T increases and heat has to be evacuated
- Battery lifetime becomes insufficient
- Dramatic increase of energy consumption worldwide
- Is Google going to build a nuclear plant?



# **SOI key value**

### **Over Power**

- Lower V<sub>min</sub>
- Reduced variability
- SRAM stability & FOM = +35% (Bulk SRAM falls apart due to RDF)
- Lower leakage

**☺** Scaling

Difficult for Bulk at 20 nm
OK via FD CMOS

☺ Speed

## **SOI MOSFETs**

Excellent subthreshold swing (< 80 mV/decade)

Superior short-channel control (DIBL < 100 mV/V)

Low I<sub>off</sub> and GIDL Difficult for Bulk to meet specs at LP 20 nm without increasing junction leakage and GIDL

Ultrathin FD SOI has demonstrated excellent SCE and performance at L < 25 nm

# **HOT SOI: Scaling**





### **Bulk:** Doping based

- Huge doping level
- Issues:
  - variability, mobility, BTBT

- **SOI:** Thickness based
- No doping effect
- Thin Si film: T<sub>si</sub> ≈ L/4
- Thin BOX & Ground-plane

# **HOT SOI: Performance**

### Top 10 super-computers: 9 are SOI-based!



SOI Products: µprocessors (AMD, IBM, Sony, ARM, ...) + ultralow power (watches) + medium/high voltage & HT (lightening & car electronics) + RF devices + imagers

+ MEMS & sensors



# **HOT SOI: Performance**

| Vame   | AMD Phenom II X4                                                                                              |                                                                                                                                                                                             | 5 Black Edit                                                                                                                                                                                                                                                                                                                                                                                                            | ion 🔼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vame   | Deneb                                                                                                         |                                                                                                                                                                                             | Brand ID                                                                                                                                                                                                                                                                                                                                                                                                                | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | enom II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| kage   | Socket AM2+                                                                                                   |                                                                                                                                                                                             | (940)                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ology  | 45 nm                                                                                                         | 45 nm Core Voltage                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ation  | A                                                                                                             | MD Phenom(t                                                                                                                                                                                 | m) II X4 955                                                                                                                                                                                                                                                                                                                                                                                                            | Processor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| amily  | F                                                                                                             | Model                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                       | Stepping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| amily  | 10                                                                                                            | Ext. Model                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                       | Revision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RB-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| tions  | MMX (+) 3                                                                                                     | DNow! (+) 55                                                                                                                                                                                | E SSE2 SSE                                                                                                                                                                                                                                                                                                                                                                                                              | 3 SSE4A x86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5-64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (Core# | ¢0)                                                                                                           |                                                                                                                                                                                             | Cache                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| peed   | 7127.8                                                                                                        | 5 MHz                                                                                                                                                                                       | L1 Data                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 x 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KBytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| iplier | x 2                                                                                                           | 8.5                                                                                                                                                                                         | L1 Inst.                                                                                                                                                                                                                                                                                                                                                                                                                | 4 x 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KBytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| peed   | 250.01                                                                                                        | MHz                                                                                                                                                                                         | Level 2                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 x 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KBytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FSB    | 2500.1 MHz                                                                                                    |                                                                                                                                                                                             | Level 3                                                                                                                                                                                                                                                                                                                                                                                                                 | 6144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KBytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ction  | Processor                                                                                                     | #1 -                                                                                                                                                                                        | Cores 4                                                                                                                                                                                                                                                                                                                                                                                                                 | Threa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ads 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Name<br>Name<br>kage<br>ology<br>ation<br>amily<br>amily<br>tions<br>(Core#<br>peed<br>tiplier<br>peed<br>FSB | Name AMD Ph<br>Name De<br>Skage De<br>Skage De<br>Skage As nm<br>sation A<br>amily F<br>amily 10<br>stions MMX (+) 3<br>(Core#0)<br>peed 7127.8<br>speed 250.01<br>FSB 2500.1<br>FSB 2500.1 | Name       AMD Phenom II X4 95         Name       Deneb         Skage       Socket AM2+         ology       45 nm       Core Volta         cation       AMD Phenom(t         amily       F       Model         amily       10       Ext. Model         tions       MMX (+) 3DNow! (+) 55         (Core#0)       7127.85 MHz         peed       250.01 MHz         FSB       2500.1 MHz         ction       Processor #1 | Name       AMD Phenom II X4 955 Black Editi         Name       Deneb       Brand ID         Skage       Socket AM2+ (940)         ology       45 nm       Core Voltage         cation       AMD Phenom(tm) II X4 955         amily       F       Model         amily       F       Model         amily       10       Ext. Model         amily       10       Ext. Model         amily       10       Ext. Model         (Core#0)       Cache         peed       7127.85 MHz         L1 Data       L1 Inst.         Level 2       Level 2         FSB       2500.1 MHz         ction       Processor #1         Cores       4 | Name       AMD Phenom II X4 955 Black Edition         Name       Deneb       Brand ID       13         Skage       Socket AM2+ (940)       13         ology       45 nm       Core Voltage       13         Station       AMD Phenom(tm) II X4 955 Processor       14       Stepping         amily       F       Model       4       Stepping         amily       10       Ext. Model       4       Revision         (Core#0)       Cache       L1 Data       4 x 64         L1 Inst.       4 x 64       Level 2       4 x 512         peed       250.01 MHz       Level 3       6144         ction       Processor #1       Cores       4       Thread |

News on 5/05/2009:

AMD smashes the 7.1 GHz barrier with SOI Phenom 2 !



# **GREEN SOI: Power Saving**



[Colinge'05]

**Repeatedly demonstrated performance gain** 

## Sake-winning bet for beyond 'Beyond-CMOS'

In 2035, our computers will still contain lots of MOSFETs with

- Traditional Chinese medication = silicon
- Generic pills = Si surrogates (Ge, GaN, ...)

## What can we do to embellish MOSFETs ?

- Enhance electrostatic control
  - For ultimate scaling: FD SOI
  - Ultrathin film
  - No doping
  - Thin BOX
  - Ground Plane
  - Multiple gates

### - Improve transport properties:

Ad-hoc boosters: R<sub>SD</sub>, strain, high-K, metal gate







# **Booster 1: Low Series Resistance**

Junction engineering via Selective Epitaxial Regrowth

- several options for raised terminals



### Source-drain Ni silicidation



# **Booster 2: High K Dielectrics**

- Similar mobility behavior for HfO<sub>2</sub> and HfSiON
- Long channels: acoustic phonon scattering prevails (μ ~ T<sup>-0.7</sup>)
- Short channels: degraded mobility & attenuated T dependence

### Additional scattering mechanisms?



8 nm thick FD SOI MOSFET

## **Additional Scattering Mechanisms**

- Short L : saturated µ(T) variation
   → presence of defects
- Neutral defects are induced, at the channel extremities, by S/D implantation and gate formation
- More important contribution of neutral defects in short-channel





## In-Situ Comparison of High-K vs SiO<sub>2</sub>

Two channels can be activated at the front and back interfaces

In-situ comparison: Si-SiO<sub>2</sub> vs. Si-high K

Back interface transport: high mobility phonon scattering low impact of neutral defects

Mobility degradation in top channel :

 $1/\mu_{HK} = 1/\mu_{SiO2} + 1/\mu_{ADD}$ 

#### **Remote Coulomb scattering**

[Vandooren et al'02, Pham-Nguyen'08]







# **Booster 3: Metal Gate**

- TiN vs TaN
- ALD vs PVD deposition
- Gate thickness from 3 to 10 nm

**Benefits** 

- No poly depletion
- V<sub>T</sub> tunning





# **Threshold voltage modulation**



- $V_T$  tuning : 100 mV shift by decreasing TiN thickness from 10 nm to 3 nm
- Similar shift for NMOS and PMOS
- No significant impact of deposition techniques (ALD or PVD) or metal materials (TiN or TaN)

# **Booster 4: Strain in SOI**

- 1 Biaxial strain at wafer level
- 2 Process-induced uniaxial strain:
  - Isolation techniques (STI, SiGe, ...) compressive or tensile

σ< (

- Source-Drain engineering SiGe for PMOS and SiC for NMOS
- Stress Memorization Transfer (SMT) from gate and/or capping layer
- Contact Etch Stop Layer (CESL) compressive (for holes) or tensile (electrons)



 Regions with compressive or tensile strain can coexist in the body of one SOI MOSFET. This effect disappears for small L.

- Different effects according to **CESL** location:
- on top of the gate
- on gate edges
- on spacers
- on extensions

[Gallon'07]

# Hole mobility: compressive CESL





- Strong gain in c-CESL with selected lengths
  - L≈ 100 nm : μ<sub>max</sub> = 180 cm<sup>2</sup>/Vs (+80% !!)
  - Stress pocket effect
  - Very short channels: Mobility gain is competed by other mechanisms





## **Competing mechanisms**

- Neutral defects, strain and source/drain scattering are inhomogeneous along the channel
- Competing effects

Saturated  $\mu$  variation  $\rightarrow$  presence of defects





- Neutral defects and strain are located at the channel extremities
- More effective contributions of neutral defects and strain in short-channel

# **Booster 5: Advanced Materials (Film)**

### **Germanium** for higher mobility

**GeOI by Smart Cut or Condensation** 

### **GaN** for power, RF, photonics



## **Booster 5: Advanced Materials (BOX)**

### **Functionalize the BOX**

- generate strain: Si<sub>3</sub>N<sub>4</sub>
- store charges (EEPROM): ONO
- optical applications: glass, quartz
- RF devices: Al<sub>2</sub>O<sub>3</sub>

## **Eliminate heat:**

### reduce self-heating: diamond, alumina, AIN





### SOD MOSFET

- Good characteristics
- No mobility degradation
- No self-heating
- Much lower thermal R

#### [Mazellier et al, 2009]

## From DRAM to 1T-DRAM



## **SOI 1T-DRAM Basics**



## **Example of FD SOI 1T-DRAM**

## Intel



- Prog. Methods: I.I. and FB1
- 45nm, stand alone cell
- LDD and high k dielectric, low doped channel
- T<sub>BOX</sub>= 10nm (V<sub>G2</sub>=-2V), T<sub>SI</sub>= 22nm
- $\Delta V_{TH}$  = 400 mV and T<sub>R</sub>= 25 ms at 85°C





V<sub>G2</sub> < V<sub>FB2</sub> < 0 To attract holes



## **'New' FBE: Meta-Stable Dip (MSD)** Dynamic coupling and drain current hysteresis





" M. Bawedin et al. SSE 2006, EDL 2008 "

## **MSDRAM:** Double-Gate MOSFET



[Bawedin et al, patent 2009]

# **MSDRAM:** Nonvolatile Function



## **Super-Coupling in Ultra-Thin MOSFETs**



#### In MOSFETs with sub-critical thickness :

- it is not possible to accumulate one channel while inverting the opposite channel
- the back surface potential follows the front gate voltage: volume inversion
- the film behaves as quasi-rigid rectangular well, with flat potential

[Eminente et al'06]



## **A-RAM: Multi-body DRAM**



## **A-RAM** ....

## **Programming/ Reading cycles**



- T<sub>si</sub> and MOX engineering can enhance the bit margin over a factor of 100
- Simple writing/reading signals
- Retention is controlled by the transistor gate

[Rodriguez et al, patent 2009]



# **Novel Architectures & Concepts**

#### **FinFETs, Triple-Gates & 3D Nanowires**





### **URAM: Unified Memory**





#### Multi-bit memory: 2n states

#### **Challenges:**

- Get 4 8 distinct levels of current
- Lower time and bias for programming
- Select appropriate materials and architectures





# **Puzzle 1: Noise in Ψ-MOSFET**

- Very powerful technique to probe the quality of SOI wafers
- The density of interface traps is determined from the sub- $V_T$  swing
- Noise is sensitive to traps
- Can we have a more sensitive tool for detecting D<sub>it</sub>?



# **Puzzle 1: Noise in Ψ-MOSFET**



- First time noise measurements
- Noise is 1/f
- Normalized noise follows the McWhorter's model

$$\frac{S_{Id}(f)}{I_d^2} = \frac{g_m^2}{I_d^2} \frac{\lambda k T q^2 N_{it}}{W L C_{ox}^2 f^{\gamma}} = \frac{g_m^2}{I_d^2} S_{VG}$$

- The noise is due to carrier number fluctuations via trapping
- The noise does not depend on series resistances
- It decreases in longer Ψ-MOSFETs

# **Puzzle 1: Noise in Ψ-MOSFET**

- Calculated trap density is huge : 5x10<sup>13</sup> cm<sup>-2</sup>
- 2 orders of magnitude larger D<sub>it</sub> than from the swing

## **Puzzle: Why is D<sub>it</sub> overestimated ??**

Trapping area:

- The aspect ratio of the P-MOSFET is W/L = 0.75
- The channel surface is  $WxL = 0.75 L^2$
- Inversion and trapping occur on the whole sample surface (much larger)
- Why the effective surface for noise and current is not the same?

Parasitic trapping at the unpassivated top surface?





# Puzzle 2: Golden Ψ-MOSFET



Gold nanoparticles deposited on the surface Hysteresis in  $I_D(V_G)$  curves:  $\Delta V_T = 3 V$ 





# Puzzle 2: Golden Ψ-MOSFET

- Hysteresis: due to gradual charging of nanoparticles
- Do the nanoparticles behave as D<sub>it</sub> or Q<sub>ox</sub> ?
- ΔV<sub>T</sub> increases
  - in thinner films
  - for higher density of nanoparticles
- $\Delta V_T$  = 3 V corresponds to 6x10<sup>11</sup> charges/cm<sup>2</sup>
- Coupling coefficient = 1 + C<sub>it</sub>/C<sub>si</sub>
- Au nanoparticles: diameter = 5–50 nm and density = 4 x 10<sup>8</sup> cm<sup>-2</sup>
- Each 50 nm ball can trap 10<sup>3</sup> electrons
- Is this analysis correct?
- What is the maximum charge the balls can accommodate?
- For ultimate sensitivity: larger or more numerous golden balls?



## **Puzzle 3: Hysteresis in FinFET**





### **MSD Effect:**

- Planar FD MOSFET with V<sub>GB</sub>
- Hysteresis = memory effect
- Combined effects: Interface coupling + Floating body + Transient
- Capacitor-less DRAM



# **Puzzle 3: Hysteresis in FinFET**



SiO<sub>2</sub> buried oxide

### **Reversed MSD Effect:**

- FinFET with  $V_{GB}$  scan;  $V_{FG} \ge V_{T1}$
- Direct scan:
  - Back interface accumulated, high V<sub>T1</sub>
  - Equilibrium
  - Front current increases by coupling:  $V_{\rm T1}$  decreases with  $V_{\rm GB}$
- Reverse scan:
  - No holes available
  - Depleted back interf: lower V<sub>T1</sub>, higher I<sub>D</sub>
  - Where is the deep-depletion effect gone?
- Experimental clues: Hysteresis suppressed for illumination or narrow fins



## **Puzzle 3: Take-away Questions**

### Why is MSD effect upside-down in FinFETs?

### Why is the front current unaffected by deep depletion?



## **Puzzle 4: Mobility in Nanowire FETs**



3 levels vertically stacked50 nanowires in parallelVarious geometries



Well behaved characteristics Excellent subthreshold swing Reasonable mobilities

## **Puzzle 4: Mobility in Nanowire FETs**





Why is the mobility degraded in 5 nm nanowires?

#### Hints:

- Subband splitting
- Phonon & carrier confinement
- Technology



# **Puzzle 4:** Mobility in Nanowire FETs



### **Puzzles:**

Why is the low-field mobility degraded in circular nanowires?

Why is the high-field mobility improved?

#### Hints:

- Charge pumping shows higher D<sub>it</sub>
- Varying surface orientation
- Surface roughness improved by H anneal

# **Final Puzzle: Tunneling FETs**



#### TFET = Gated PIN diode

- Reversed biased
- B2B tunneling: small switch (SS < 60 mV/decade)</p>



L<sub>IN</sub> = 0: symmetric TFET Tunneling at both S & D L<sub>IN</sub> = 50 nm: suppressed ambipolar conduction



# **Final Puzzle: Tunneling FETs**

### **Puzzles:**

- Why is the swing larger than 60 mV/decade?
- Why is the current smaller than predicted by simulations? Even in Ge...
- No negative resistance in I<sub>D</sub>(V<sub>D</sub>) curves? Why?
- Is the current due to B2B tunneling exclusively?

#### Hints:



- Noise is RTS with 1/f<sup>2</sup> spectrum (discrete number of traps)





- SOI is HOT: performance & scalability
- SOI is GREEN: power & voltage saving
- SOI is versatile: new devices
- Puzzles selected to develop curiosity & thinking