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� Higher dielectric constant (κ) 
materials must be used for 

� having a larger capacitance 
for nanoscale devices; 

reducing the leakage current
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� reducing the leakage current
while maintaining the same 
gate capacitance;

� using of physical thicker high-
k materials would also 
provide better process control.

D. Misra, H. Iwai and H. Wong, Interface 
(Electrochem. Soc.), 14, (2005).



Subnanometer EOT

� The physical thickness of 0.6 nm EOT 
La2O3 is less than 4 nm.

� Scaling closer bulk thickness limit (~1 � Scaling closer bulk thickness limit (~1 
nm?).

� Large leakage current are expected 
because of smaller band offsets at Si 
interface and high defect density. 
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Some problems of high-κ dielectrics 

� Thermal instability

� Low channel mobility

� High interface trap density

� High oxide trap density

Large leakage current
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� Large leakage current ��
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H. Wong and H. Iwai, Microelectron. Eng. 83, 1867 (2006). 



2. Tailor-making the Dielectric 
Properties:  Complex Oxides

O, N

1. Stoichiometric
binary alloys

LaAl11O18, LaAlO3

La
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Si
Al

O, N LaAl11O18, LaAlO3

2. Pseudo alloys

LaSiON

3. Doping, N, Al …

4. µµµµO control 
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2. Stoichiometric binary alloys

� Stoichiometric binary alloys may be formed from two 
different metal, TM/RE elements. 

� Two different metals sharing the same oxygen.

� Titanium and scandium can form stoichiometric binary 
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� Titanium and scandium can form stoichiometric binary 
alloys with many other TM/RE elements. 

� The composition ratio of the two metal elements is limited 
to a certain value. 
� E.g, in Zr or Hf titanate, the compositional ratio of TiO2 is limited 

to 1:2, 1:1, or 2:1; 

� In RE scandates, the ratio of the elemental oxides is 1:1.



2. Stoichiometric binary alloys

� Ti is more ionic than 
most of the other TM/RE 
elements. 
� It serves as a polarizer and 

produces a higher k value;
2p
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It serves as a polarizer and 
produces a higher k value;

� Sharing the same O with other 
metal. The bonding character 
is different from the elemental 
oxide;

� EV is constituted by the TM p-
states, and the EC is Ti-like.

2p

T2g(π)

Eg(σ)

Tlu(σ, π)

Tlu(σ, π)

Alg(σ)

Metal OxygenMO6

� Not a good candidate for gate dielectric application !
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Photon Energy (eV) 10 9 8 7 6 5 4 3 2 110 9 8 7 6 5 4 3 2 1

Binding Energy (eV)

G. Lucovsky, Frontiers in Electronics, World Scientific, Singapore, 2006, 263. 

O K1 edge features in Hf titanate can be approximated by a mixture of 
the individual HfO2 and TiO2 features. 

The ionicity of the overall metal-oxygen bond is 
changed nearly according to the averaging effect.



2. Stoichiometric binary alloys

� Stoichiometric La, Dy and Gd scandates have 
similar electronic structures. 

� The stoichiometric oxides, except the LaAlO3, generally 
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� The stoichiometric oxides, except the LaAlO3, generally 
lead to a larger k value and a smaller band gap value.
� Effect of polarizer !

� Not a good candidate because the conduction band is too 
small. 



2. Stoichiometric binary alloys

� c-LaAlO3 may be the only possible stoichiometric binary 
alloy for gate dielectric applications;

� it is normally in the crystalline form; 
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� c-LaAlO3 has a small lattice mismatch to Si;

� LaAlO3/Si interface is also stable as both La and Al 
oxides are stable on Si;

� LaAlO3 film cannot be directly grown on Si. Amorphous 
LaAlO3 can be grown with a SrTiO3 buffer layer. 
Alternatively, Si can be grown on c-LaAlO3. 



3. Pseudo-binary alloys

� Most TM/RE silicates and 
aluminates are in the form of 
pseudo-binary alloy or in the 
form of solid solution. 

The compositions of SiO and 
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� The compositions of SiO2 and 
Al2O3 in the TM/RE alloys vary
continuously .

� TM/RE d-states do not mix with 
the lowest conduction band s
states of Si or Al. 

The material properties are still different to elemental 
constitution oxides.

G. Lucovsky, Frontiers in Electronics, World 
Scientific, Singapore, 2006, 263. 



3. Pseudo-binary alloys

� SiO2 is an amorphizer for TM/RE oxides; crystallization 
temperature increases because:
� The ionic metal atom bonds in silicate alloys can be disrupted and 

modified by the covalent Si-O bonds � modified continuous 
random network.
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� It reduces the effective k value.

� However, pseudo-binary alloys may be less stable at very high 
temperature; 

� Si can be a donor to La2O3 and enhance electron conduction. 



Comparison of Different Forms of Complex Oxides

Properties Pseudo-Binary 
Alloy

Stoichiometric 
Alloy

Doping

Typical Materials Silicates, 
aluminates, 
(HfO2)x(SiO2)y, 
(HfO2)x(Al 2O3)y

Titanates, scandates, 
HfmTinO2(m+n), 
LaScO3, LaAlO3

HfO2 with ~5% N
La2O3 with ~5% N
La2O3 with 10% Al 

Dielectric � � --
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Dielectric 
Constant

� � --

Conduction Band -- � --

Valance Band -- little effect --

Crystallization 
Temperature

� � �

Phase Separation Yes -- At interface

Si Interface Better -- Better
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4.1 Nitrogen Doping

Bulk La oxynitride

� Large amount of N incorporation in La2O3 oxides will change the 
material properties such as bandgap narrowing.

� Bulk type TM/RE oxynitride is unstable. It was found that the bulk 
La-N bonds can be readily replaced by oxygen with thermal 
annealing in oxygen ambient. 

Doping 
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Doping 
� Dopant with amount of < 10 at.%
� Does not change the electronic structure of host dielectric
� But still have significant impact on some of the electrical and 

material properties:
� Increases the crystallization temperature remarkably. 
� Suppresses the boron penetration. 
� Reduces the leakage current by reducing the oxygen vacancies. 



4.1 N Doping

� Mechanisms of nitrogen incorporation:
� filling of the O vacancies (VO) in the bulk;

� replacement of O atoms of the VO neighbors and making the VO
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� replacement of O atoms of the VO neighbors and making the VO

centers inactive;

� nitridation of the interfacial La-Si bonds; and

� nitridation of the interfacial Si-Si bonds and substrate Si.

� Note: Different to SiO2 nitridation. 
� N incorporation in SiO2 mainly occurred on the surface and at 

the SiO2/Si interface by nitridation of Si-Si and silicon dangling 
bonds.



N Doping on La2O3 : Si 2s interface XPS
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� Reduce La-Si, 

� Increase Si-N and Si-O.

� Reduce La-Si, 

� Increase Si-N and Si-O.
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Nitrogen Doping
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� O 1s shows two kinds of 
bonding at interface of N-

PIII sample.

� O 1s shows two kinds of 
bonding at interface of N-

PIII sample.

� La 3d shows the exist of 
silicates at the interface of 

N-PIII sample.

� La 3d shows the exist of 
silicates at the interface of 

N-PIII sample.



La 3d at interface
In

te
ns

ity
 (

A
rb

. U
ni

ts
)

15x103

20x103

25x103

30x103

without N-PIII
La-O-Si

25x103

30x103

with N-PIII
600 oC RTA

La-O-Si

Hei Wong: Tokyo, Feb 09 24

Binding Energy (eV)

845 850 855 860 865

In
te

ns
ity

 (
A

rb
. U

ni
ts

)

0

5x103

10x103

La-Si

La-Si

La-O-Si

Binding Energy (eV)

845 850 855 860 865

In
te

ns
ity

 (
A

rb
. U

ni
ts

)

0

5x103

10x103

15x103

20x103

25x103
600 oC RTA

La-N

La-O-Si
La-N

� La-Si reduces,

� La-N and La-O-Si increase.

� La-Si reduces,

� La-N and La-O-Si increase.



C-V Characteristics

� Smaller flatband
shift � low oxide 

trap density

Steeper slope 

� Smaller flatband
shift � low oxide 

trap density

Steeper slope 
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� Steeper slope �

low interface trap 
density

� Steeper slope �

low interface trap 
density



3.3 Summary
� Properties of La2O3 were improved by 
incorporating a trace amount of N atoms.

� La2O3 reduces the O vacancies in the bulk, 
distorts the lattice structure and thus enhances distorts the lattice structure and thus enhances 
the thermal and electrical stabilities of La2O3 films. 

� N incorporation also improves the interface. It 
reduces the amount of silicide bonds at the 
interface by forming La-N bonds and causes the 
interface oxidation. 
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4.2.1 XPS: La 3d XPS
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� Bulk La 3d2/3 has a 
doublet at 851.4 eV and 
satellite energy of 855.2 
eV. 

� Bulk La 3d2/3 has a 
doublet at 851.4 eV and 
satellite energy of 855.2 
eV. 
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� Bulk La 3d2/3 doublet shift 
to 852.7 eV and 856.2 eV
because of the La-O-Al 
bonding.

� Bulk La 3d2/3 doublet shift 
to 852.7 eV and 856.2 eV
because of the La-O-Al 
bonding.



In
te

ns
ity

 (
A

rb
. U

ni
ts

)

5.0e+4

1.0e+5

1.5e+5

2.0e+5

2.5e+5

Bulk

Interface

La2O3 with 600 oC RTA

4.2.1 XPS: Interface La 3d
In

te
ns

ity
 (

A
rb

. U
ni

ts
)

2e+4

4e+4

6e+4

8e+4

1e+5

600 oC 2 min. RTA 

Bulk

Interface

Al-implanted
w/o Al-implanted

Hei Wong: Tokyo, Feb 09 29

Binding Energy (eV)

845850855860865
0.0
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� La 3d2/3 shifts to higher 
energy side because of 
the existence of interfacial 
silicate layer. 

� Weaker satellite peak. 

� La 3d2/3 shifts to higher 
energy side because of 
the existence of interfacial 
silicate layer. 

� Weaker satellite peak. 
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� The shift of La 3d2/3 peak 
reduce. 

� Stronger satellite peak.

� The shift of La 3d2/3 peak 
reduce. 

� Stronger satellite peak.



4.2.1 XPS O 2p
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� In Al-implanted sample, O 2p at both bulk and interface 
has a dominant peak at about 531.4 eV due to Al2O3. 

� The 531.4 eV O 2p peak are not due to the random 
mixing of La-O and Si-O bonds partially because we did 
not detect the La2O3 peak at the interface.

� In Al-implanted sample, O 2p at both bulk and interface 
has a dominant peak at about 531.4 eV due to Al2O3. 

� The 531.4 eV O 2p peak are not due to the random 
mixing of La-O and Si-O bonds partially because we did 
not detect the La2O3 peak at the interface.
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4.2.1 XPS: Si 2s
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Binding Energy (eV)
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� Neither SiO2 peak (153.9 eV) nor silicate peak (152–153 
eV) was found.

� The low conc. of Si-O and La-Si bonding in Al-implanted 
samples are due to the formation of Al2O3 layer at the 
La2O3/Si interface.

� Neither SiO2 peak (153.9 eV) nor silicate peak (152–153 
eV) was found.

� The low conc. of Si-O and La-Si bonding in Al-implanted 
samples are due to the formation of Al2O3 layer at the 
La2O3/Si interface.



4.2.1 XPS: Al 2p
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4.2.2 Electrical Characteristics: C-V

� With 600 oC RTA+PMA, VFB
reduces to about -0.9 V 
indicating the trapped charge 
density has been reduced 
pronouncedly. 

� The reduction +Q is due to 
oxidation of Al at the interface 
and the forming of complex 
LaAlO3 in the bulk during RTA.
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LaAlO3 in the bulk during RTA.
� 600 oC RTA �the lowest Dit as 

revealed by the steepest 
transition between the 
accumulation region and the 
strong inversion.

� These effects result in  
significant reduction in Jg. 

� VFB shifts to more -ve side for T <
500 oC because the implanted Al 
ions had not been fully activated 
and the interstitial atoms serve as 
+Q. 



4.2.2 Electrical Characteristics: I-V

� The I-V characteristics of La2O3 films 
were found to be quite unstable 
because of the present of large 
amount O vacancies and the 
hydroscopic nature of La2O3.

� Jg of Al-implanted films have 
been reduced by a couple 
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been reduced by a couple 
orders of magnitude. 

� The current reduction is more 
significant for RTA at 500 oC 
and 600 oC. 

� Reduction of bulk VO + 
formation of interfacial Al2O3
layer.



� A trace amount of Al doping has significantly improved
the material and interface properties of La2O3/Si 
structure while keep most other desirable high-k 
properties unchanged. 

� Al atoms were incorporated into the La2O3 network in 

4.3 Summary
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� Al atoms were incorporated into the La2O3 network in 
the bulk and forming a thin Al2O3 layer at the La2O3/Si 
interface. 

� The interfacial Al2O3 layer suppressed the out-diffusion 
of substrate Si and the formation La silicate and La 
silicide bond at the interface. 

� Both the bulk and interface defect densities were 
reduced with this process. 
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Using MgO, SrO, CeO2 …



Illustration of using CeOx for Oxygen 
Chemical Potential Control for La2O3
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5.1 Electrical Characteristics: I-V
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� Vt and gm were significantly improved as compared with 
transistors with La2O3 only. 

� suppression of fixed oxide charge in the CeOx capped 
La2O3 film and enhancement of channel mobility.



� Subthreshold slope (SS)
is much better than the 
device using La2O3 only:

� 72 mV/dec for NMOS

73 mV/dec PMOS

5.1 Electrical 
Characteristics: I-V
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� 73 mV/dec PMOS

� ~ 100 mV/dec for 
NMOS with La2O3 gate 
oxde. 



Parametric Comparison

Parameter

La2O3 CeOx/La2O3

NMOS PMOS NMOS PMOS
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Parameter NMOS PMOS NMOS PMOS

Vt (V) -0.085 -1.064 0.067 -0.840

SS (mV/dec) 101 195 72 73
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5.2 Hot-Carrier Effects

� Vt increases rapidly 
after a brief 
“stressing” of 10 s.
� charge trapping at 

the interface. 

� For Vgs = Vds ≤ 2.5 V, 
V does not have 
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� Vt remains almost the same for stressing duration up to 
24 hrs. 

Vt does not have 
much change for 
different stressing 
voltages. 

� The transistor was biased at Vgs = Vds to have maximum hot carrier injection. 
� Vt = 0.067 V before the stressing being taken place. 
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5.2 Hot-Carrier Effects

� Abrupt jump of Vt shift 
for stressing at Vgs = 
Vds = 2.6 V because 
the onset of FN 
conduction.

� Gradual increasing of Vt
up to 0.105 V for 180-
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0.06
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� Stressing at 2.6 V �
� filling of VO in La2O3 and the interface trap at CeOx/La2O3 interface;
� generation of oxide charges or interface charges for prolonged

stressing.
� Vt did not increase further for stressing up to 24 hrs. 

t
up to 0.105 V for 180-
min stressing is due to 
stress induced defects.



5.2 Example of stressed Ids-Vgs Characteristics
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� Notable change, but still small, for HC stressing at Vgs = Vds = 2.6 
V. 
� band bending of the Si/La2O3 interface is large enough to cause 

FN conduction over the EC edge.
� able to cause O- species to have a notable drift? 



5.2 Hot-Carrier Effects
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� HC stressing has larger impact on the PMOS. 
� A large +ve Vt shift was found for sample stressed at 

Vgs= Vds = -2.4 for 30 min !
� The present results demonstrate much better robustness 

against the HC stressing than the transistor using La2O3
only.



� The transistors with W/CeO
x
/La2O3 gate stack have:

� smaller threshold voltage,
� larger transconductance,
� smaller subthreshold slope, and
� better hot-carrier robustness

when compared with devices using La O gate dielectric only.

5.3 Summary
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when compared with devices using La2O3 gate dielectric only.

� These improvements were ascribed to the filling of O vacancies in
La2O3 film with the O atoms released from partial reduction
reaction of the capping CeO2 film.



La-based high-κ dielectric can be a promising candidate for 
sub-nanometer EOT for future nanoscale MOS devices.

The instability issues can be alleviated by several 

6. Conclusions
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The instability issues can be alleviated by several 
methods such as doping or stacked structure. 


