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i Subnanometer EOT

= The physical thickness of 0.6 nm EOT
La,05 is less than 4 nm.

= Scaling closer bulk thickness limit (~1
nm?).

= Large leakage current are expected
because of smaller band offsets at Si
interface and high defect density.
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Some problems of high-K dielectrics
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2. Tailor-making the Dielectric
Properties: Complex Oxides

1. Stoichiometric
binary alloys

LaAl;;0,g, LaAIO;
2. Pseudo alloys
LaSION
3. Doping, N, Al ...

4. |1, control
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iz. Stoichiometric binary alloys

= Stoichiometric binary alloys may be formed from two
different metal, TM/RE elements.

= Two different metals sharing the same oxygen.

s /itanium and scandium can form stoichiometric binary
alloys with many other TM/RE elements.

= The composition ratio of the two metal elements is limited
to a certain value.

« E.g, in Zr or Hf titanate, the compositional ratio of TiO, is limited
to 1:2, 1:1, or 2:1;
= In RE scandates, the ratio of the elemental oxides is 1:1.
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2. Stoichiometric binary alloys

Lue0m)
. .- gp——c A,
= Ti is more ionic than As N
most of the other TM/RE

elements. 3d

« It serves as a polarizer and
produces a higher kvalue;

» Sharing the same O with other
metal. The bonding character
is different from the elemental
oxide;

= £, is constituted by the TM p- Metal MOs Oxygen
states, and the £,is Ti-like.

= Not a good candidate for gate dielectric application !
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G. Lucovsky, Frontiers in Electronics, World Scientific, Singapore, 2006, 263.

O K1 edge features in Hf titanate can be approximated by a mixture of
the individual HfO, and TiO, features.

The ionicity of the overall metal-oxygen bond is
changed nearly according to the averaging effect.
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2. Stoichiometric binary alloys

= 'otoichiometric La, Dy and Gd scandates have
similar electronic structures.

» The stoichiometric oxides, except the LaAlO,, generally
lead to a larger k value and a smaller band gap value.
s Effect of polarizer !

= Not a good candidate because the conduction band istoo
small.

Hei Wong: Tokyo, Feb 09 14



iz. Stoichiometric binary alloys

= ¢LaAlO; may be the only possible stoichiometric binary
alloy for gate dielectric applications;

= it is normally in the crystalline form;
s LaAlO; has a small lattice mismatch to Si;

s LaAlO;/Si interface is also stable as both La and Al
oxides are stable on Si;

= LaAlO; film cannot be directly grown on Si. Amorphous
LaAlO; can be grown with a SrTiO; buffer layer.
Alternatively, Si can be grown on &LaAlO;.
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3. Pseudo-binary alloys

5

= Most TM/RE silicates and
aluminates are in the form of
pseudo-binary alloy or in the
form of solid solution.

o
o
T

Dielectric Valence Band Offset (eV)

4\
= The compositions of SiO, and
Al,O5 in the TM/RE alloys vary
continuously . 3.5
s TM/RE dtstates do not mix with | ; a ;
the lowest conduction band s ®3 305 34 345 32 325 33
states of Si or Al. Mean-Field Electronegativity

G. Lucovsky, Frontiers in Electronics, World
Scientific, Singapore, 2006, 263.
The material properties are still different to elemental

constitution oxides.
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3. Pseudo-binary alloys

= SI0, is an amorphizer for TM/RE oxides; crystallization
temperature increases because:

= The ionic metal atom bonds in silicate alloys can be disrupted and
modified by the covalent Si-O bonds =» modified continuous
random network.

It reduces the effective k value.

= However, pseudo-binary alloys may be less stable at very high
temperature;

= Si can be a donor to La,05 and enhance electron conduction.
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| Comparison of Different Forms of Complex Oxides

N
o

Properties Pseudo-Binary Stoichiometric Doping
Alloy Alloy

Typical Materials | Silicates, Titanates, scandatgsifO, with ~5% N
aluminates, Hf 2 T1.05 iy La,O, with ~5% N
(HfO,),(SIO,),, LaScQ, LaAlQO, La, O, with 10% Al
(HfO,),(Al,O,),

Dielectric N2 N --

Constant

Conduction Band -- N --

Valance Band == little effect ==

Crystallization N N% N

Temperature

Phase Separ ation Yes - At interface

Si Interface Better == Better
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4.1 Nitrogen Doping

/k La oxynitride

incorporation in La,05 oxides will change the
material properties such as bandgap narrowing.

= Bulk type TM/RE oxynitride is unstable. It was found that the bulk
La-N bonds can be readily replaced by oxygen with thermal
annealing in oxygen ambient.

Doping
Dopant with amount of < 10 at.%

Does not change the electronic structure of host dielectric

But still have significant impact on some of the electrical and
material properties:

= Increases the crystallization temperature remarkably.
= Suppresses the boron penetration.
= Reduces the leakage current by reducing the oxygen vacancies.
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4.1 N Doping

= Mechanisms of nitrogen incorporation:
=« filling of the O vacancies (1) in the bulk;

= replacement of O atoms of the |, neighbors and making the |
centers inactive;

= hitridation of the interfacial La-Si bonds; and
= hitridation of the interfacial Si-Si bonds and substrate Si.

= Note: Different to SiO, nitridation.

= N incorporation in SiO, mainly occurred on the surface and at
the SiO,/Si interface by nitridation of Si-Si and silicon dangling
bonds.
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N Doping on La,0; : Si 2s interface XPS
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Nitrogen Doping .

Intensity (Arb. Units)
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O 1s shows two kinds of = La 3d shows the exist of
bonding at interface of N- silicates at the interface of
PIII sample. N-PIII sample.
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C-V Characteristics

= Smaller flatband
shift = low oxide

trap density

= Steeper slope =
low interface trap
density

I I I
1.2F As-deposited
o s o NP
—— e == /o N-PIIl
o 1.0 e
£ r~
= /
S 08 if /
Q 1 o
S 400 °C RTA~J, 1, ~500°CRTA |
T 06 :,', /
N 600 °C RTA—f+4, 600°CRTA |
@© ,ll' ’
% 0.4} il ’
Z bl ] 400 °CRTA
(]
0.2} !l /
L——_—_ /
0.0 | | | |
30 20 -10 00 1.0 20 30 40
Gate Voltage (V)
Hei Wong: Tokyo, Feb 09 25



3.3 Summary

s Properties of La,0; were improved by
incorporating a trace amount of N atoms.

s La,0; reduces the O vacancies in the bulk,
distorts the lattice structure and thus enhances
the thermal and electrical stabilities of La,O; films.

= N incorporation also improves the interface. It
reduces the amount of silicide bonds at the
interface by forming La-N bonds and causes the
interface oxidation.
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Intensity (Arb. Units)

4.2.1 XPS: La 3d XPS
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= Bulk La 3d,,; doublet shift

to 852.7 e

and 856.2 eV
because of the La-O-Al
bonding.
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Intensity (Arb. Units)

4.2.1 XPS: Interface La 3d

1

8

6

4

2

0

e+5

600 °C 2 min. RTA

w/o Al-implanted

e+d Bulk

e+4

e+4

- =
o~
et m N =—"

s et e G e S a——

..J-.\..

-y ®e
—

Binding

Energy (eV)

= La 3d,; shifts to higher
energy side because of
the existence of interfacial
silicate layer.

= Weaker satellite peak.
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= The shift of La 3d,,; peak
reduce.

= Stronger satellite peak.
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Intensity (Arb. Units)
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= In Al-implanted sample, O 2p at both bulk and interface
has a dominant peak at about 531.4 eV due to Al,O;.

The 531.4 eV O 2p peak are not due to the random

mixing of La-O and Si-O bonds partially because we did
not detect the La,O; peak at the interface.
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4.2.1 XPS: Si 25 ..

Intensity (Arb. Units)
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= Neither SiO, peak (153.9 eV) nor silicate peak (152-153
eV) was found.
= The low conc. of Si-O and La-Si bonding in Al-implanted

samples are due to the formation of Al,O5 layer at the
La,05/Si interface.
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4.2.1 XPS: Al 2p
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Normalized Capacitance

As-deposited
400°C

400 °C + PMA
600 °C
= 500 °C +PMA

0 2
Gate Voltage (V)

Vg shifts to more -ve side for T <
500 °C because the implanted Al
ions had not been fully activated

and the interstitial atoms serve as

+Q.

4.2.2 Electrical Characteristics: C-V

With 600 °C RTA+PMA, Vg
reduces to about -0.9 V
indicating the trapped charge
density has been reduced
pronouncedly.

The reduction +Q is due to
oxidation of Al at the interface
and the forming of complex
LaAlO; in the bulk during RTA.

600 °C RTA =>the lowest D, as
revealed by the steepest
transition between the
accumulation region and the
strong inversion.

These effects result in
significant reduction in J,
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Leakage Current Density (Ncmz}
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4.2.2 Electrical Characteristics: I-V

The I-V characteristics of La,0; films
were found to be quite unstabf’e
because of the present of large
amount O vacancies and the
hydroscopic nature of La,Os.

J, of Al-implanted films have
been reduced by a couple

orders of magnitude.

The current reduction is more
significant for RTA at 500 °C
and 600 °C.

Reduction of bulk V, +

formation of interfacial Al,O,
layer.
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i 4.3 Summary

A trace amount of Al doping has significantly improved
the material and interface properties of La,0,/Si
structure while keep most other desirable ﬁigh-k
properties unchanged.

Al atoms were incorporated into the La,O; network in
the t%ulk and forming a thin Al,O; layer at the La,05/Si
interface.

The interfacial Al,O; layer suppressed the out-diffusion
of substrate Si and the formation La silicate and La
silicide bond at the interface.

Both the bulk and interface defect densities were
reduced with this process.
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Illustration of using CeO, for Oxygen
|Chemica| Potential Control for La,0;

\J X e02+ce203)

Si

L, control /

Oxide Charge Density

Cett & Ce3+
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Drain Current (mA)

1.4

12

0.8

5.1 Electrical Characteristics: I-V

1.4

=67 mV

T T
| NMOS
W/L=10 pm/2.5 pm

[ Threshold Voltage =
10

T T
V =12V
9

B Ceox/ La 203

0.8V

0.2V
: 1

1.2

Drain Current (mA)
© o o =
£ (o)) (o] o

=
(N}

<
o

0.0 0.2

1 N 1 1 1
0.4 0.6 0.8
Drain Voltage (V)

1.0

1.2

= I and g, were significantly improved as compared with
transistors with La,O; only.

=>» suppression of fixed oxide charge in the CeO, capped
La,O; film and enhancement of channel mobility.
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L e A e o e T B
5.1 Electrical
- - E W/L=10um/2.5um
haracteristics: I-V 2 ol vosomy ]
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. (@] A
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* Parametric Comparison

La,0;
Parameter | NMOS | PMOS
V, (V) -0.085| -1.064

SS (mV/dec) 101 195
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5.2 Hot-Carrier Effects

011 —m———r———r——F——r——1——1——1——
increases rapidly
Fter a brief 0.10
‘stressing” of 10 s. S WIL=10 /2.5 pm
= charge trapping at S 0.09
the interface. S
2 0.08
s For I/ <25V, ¢
V, doés not Fwave = 007
much change for
different stressing S 20 40 60 80 100 120 140 160 180
VOItageS Stressing Time (min)

o 5/ rﬁmalns almost the same for stressing duration up to
4 nhrs
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5.2 Hot-Carrier Effects’ [ |

W/L=10 um/2.5 pm

r stressing at =
Vi.=26V becalse
the onset of FN
conduction.

s Gradual increasing of
up to O 105 V for 180- 0 20 40 60 80 100 120 140 160 180
min stressing is due to Stressing Time (mir)
stress induced defects.

s Stressingat 2.6V =>
« filling of V; in La,05; and the interface trap at CeO,/La,0; interface;
= generation of oxide charges or interface charges for prolonged
stressing.

= l/ did not increase further for stressing up to 24 hrs.

Threshold Voltage (V)
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5.2 Example of stressed 1,-V Characteristics

10° FE T T T T T T
E NMOS
10" _
T E-W/L=10um/2.5um ]
NMOS -
10°
W/L=10um/2.5um g
£ 10°F i
g 10° @ —=— Fresh (V, =50 mV) |
= Fresh (V=50 mV) S 107k —o— Stressed (V, =50 mV)
9 0 6 d O E _ -
5 1 —o— Stressed (V, =50 mV) c 4—Fresh (V,=1.2V)
g 107 —m— Fresh (V,=1.2V) - S 0%k —— Stressed (V,= 1.2 V)
'S —o— Stressed (V, = 1.2 V) o 2 )
o 10° o
] 107 ¢ Stressed at V_=V_ =26V for10°s
10° Stressed at V =V, =2.4Vfor10’s F g
10-10 L 1 . 1 . 1 . 1 . 1 . 1 . 1 .
1070 past , — -04 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

T T — T T T T
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Gate Voltage (V)
Gate Voltage (V)

m \Ijotable change, but still small, for HC stressing at I, = Vs = 2.6

« band bending of the Si/La,0O, interface is large enough to cause
FN conduction over the £ edge.

= able to cause O- species to have a notable drift?
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5.2 Hot-Carrier Effects
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HC stressing has larger impact on the PMOS.
A large +ve ] shift was found for sample stressed at

Vos= Vgs = -2.4 for 30 min !

el =
o7 —a
A
A
)
—o—V =20V
PMOS — N =232V
W/L=100 pm / 5 pm ol
—A—V =24V
| L | L | L | L | L |
20 40 60 80 100 120

The present results demonstrate much better robustness
against the HC stressing than the transistor using La,0;

only.
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5.3 Summary

= The transistors with W/CeO,/La,0; gate stack have:
= smaller threshold voltage,
= larger transconductance,
= smaller subthreshold slope, and
= better hot-carrier robustness

when compared with devices using La,05 gate dielectric only.

= These improvements were ascribed to the filling of O vacancies in

La,O; film with the O atoms released from partial reduction
reaction of the capping CeO, film.
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| 6. Conclusions

La-based high-« dielectric can be a promising candidate for
sub-nanometer EOT for future nanoscale MOS devices.

The instability issues can be alleviated by several
methods such as doping or stacked structure.

e
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