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Outline

3-D Quantum Mechanical Simulation of Nano-MOSFETs 
vs. Electro-Magnetic simulation

The transverse mode representation

Applications to

• nMOS/pMOS I-V characteristics

• Analysis of a super-steep subthreshold slope MOSFET

Analogies to RCWA EM simulation

• Application to solar-cell analysis

From Monte Carlo Device Simulation to Ionic Transport 
through Biological and Synthetic Nano-Scale Channels
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NUMERICAL SIMULATION OF ION 
TRANSPORT THROUGH ION 

CHANNELS AND SOLID-STATE 
NANOPORES
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Particle based simulation

 Particle based simulation has been largely applied to 
the analysis of MOSFETs since mid 80's

• Hot Carriers

• Quasi-Ballistic Effects

• 2-D transport in ultra-thin SOI MOSFETs

 Competences acquired in the field of MOSFET 
simulation can be transferred to other fields

 The case for ion transport in cellular ion channels 
and nanopores
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• Ion channels are pore-forming proteins across the cell membrane that allow the 
cell to exchange ions with the extracellular environment

• Not simple pores but switches
• Several gating mechanisms
• High selectivity
• High throughput
• ...

ION CHANNELS
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ION CHANNELS

• Ion channels are classified by the gating mechanism that determines their 
permeability

• Voltage-dependent
• Ligand-dependent
• Mechanosensitive channels

• Open and closed states are stochastic 
events determined by the gate mechanism
• Usually for a single channel:
• Conductance of open state has a 
typical mean value
• When a constant transmembrane 
potential is applied the current 
becomes a two-level random signal 
(RTS)
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• A membrane separates two ionic baths
• Ions can cross the membrane only through the pore
• Rotational symmetry

SIMULATION DOMAIN

INTRACELLULA
R BATH

EXTRACELLULA
R BATH

MEMBRAN
E

PORE

MEMBRAN
E



University of Bologna 

• For a synthetic nanopore the simulation domain is built imposing 
geometrical constraints
• An ion channel is defined by the charge distribution of the protein and the 
characteristics of the membrane

SIMULATION DOMAIN 
GENERATION
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SIMULATION DOMAIN
• Phase boundary is determined by the charge 
distribution of the channel and the membrane
• Ions cannot cross the boundary

MEMBRANE
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SIMULATION APPROACHES

• Molecular Dynamics (MD)
• Interactions between every couples of atoms in the system are taken into account
• Highly accurate
• Computationally too expensive  

• Poisson-Nernst-Planck Approach (PNP)
• Based on continuum  charge distribution
• Became more and more critical when dimensions of the channel decrease
• Loss of characteristic effects (gating and selectivity) 

• Brownian Dynamics (BD)
• Something in between..



University of Bologna 

BROWNIAN DYNAMICS
• Something in between MD and PNP
• Only the trajectories of the ions are modeled
• Water molecules trajectories are neglected
• Interactions between ions and waters are included trough a friction force 
and random forces (collisions) acting on the ions
• Ions trajectories are generated according to the Langevin's equation:

Force acting 
on ion i

Force due to the 
electric field

Force due to  friction 
with surrounding water

 collisions with 
surrounding water



University of Bologna 

BROWNIAN DYNAMICS

• Only the trajectories of the ions are modeled
• Water molecules trajectories are neglected
• The dynamics of ions is described by Langevin's equation:

mi v̇ i  t =−mi γ i v i  t +Fi r  t   +Ri  t 

• Ion trajectories are computed according according Verlet algorithm [1]: 

[1] Van Gunsteren and Berendsen, Algorithms for Brownian dynamics (Molecular Physics Vol. 45, No. 3,1982, 637-647)

x t n +Δt =x  t n [1 +e−γΔt ]− x t n−Δt e−γΔt

+m−1 F t n   Δt 2  γΔt −1 [1−e−γΔt ]

+m−1 Ḟ t n   Δt 3  γΔt −2 [1/2 γΔt [1+e−γΔt ]−[1−e−γΔt ] ]
+Xn  Δt +e−γΔt X n −Δt +O [  Δt 4 ]
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ELECTROSTATICS

∇2 φ r =−
ρ r 

ε0 ε r 

ε 0∇⋅[ε r ∇ φ r  ]=−ρ r 

E r =−∇ φ r 

POISSON EQUATION

Multiple dielectrics – inhomogeneous media

Introducing the electric field and the polarization

ε 0 ∇⋅E r =ρ r −∇⋅P r 

Poisson equation takes the form:

P r = ε r −1  ε 0 E r 



University of Bologna 

ELECTROSTATICS

h r =
1−ε r 

ε r 
ρ r −ε 0

∇ ε r 
ε r 

⋅E r 

Introducing the polarization charge density:

And substituting it in the Poisson equation, we obtain

h r =−∇⋅P r 

 Polarization induced charges are calculated 
according to the ICC method [D. Boda, et al., Phys. Rev. E, 
69, 046702, 2004.]

 Calculation of h(r) is performed numerically on a 
discretization grid for the surface boundaries where 
discontinuity of permittivity occurs.
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• ICC methods work on an approximation of the phase boundary 
• Surface elements are called “tiles” and can be flat or curved
• Tiles can be divided in subtiles 
• 

ICC – Discretization of surface boundaries



University of Bologna 

• Once h(r) is calculated, we can solve the particle-particle electrostatic 
problem by superimposing several contributions

Total 
electric 

field

Electric field 
generated by fixed 

charges in the 
membrane

Electric field generated 
by an applied 

transmembrane potential

Self-
induced 
electric 

field

Electric field generated by 
other ions in the system 

(Coulombic term)

Electric field 
generated by other 
ions in the system 
(polarization term)

ELECTROSTATICS
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• Total potential energy

ELECTROSTATICS
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• The simulator has been tested with catenary channel test case [3]:

TEST CHANNELS – CATENARY CHANNEL

[3] M. Hoyles et al., Computer simulation of ion conductance in membrane channels (Phys. Rev. E. 58:3654-
3661, 1998)



University of Bologna 

• The simulator has been tested with catenary channel test case [3]:

TEST CHANNELS – CATENARY CHANNEL

[3] M. Hoyles et al., Computer simulation of ion conductance in membrane channels (Phys. Rev. E. 58:3654-3661, 1998)



University of Bologna 
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• KcsA is a potassium channel of the bacterium Streptomyces Lividans

• Highly selective
• Highly permeable for K+ ions

TEST CHANNELS – KcsA CHANNEL
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 The potential profiles along the channel are in good agreement with those 
obtained by molecular Dynamics and Brownian Dynamics simulations [4]

TEST CHANNELS – KcsA CHANNEL

[4] S.H. Chung et al., Conducting-state properties of the KcsA potassium channel from ... (Biophys. J. 82:628-645, 2002)
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• We compare our results with experimental data [5]  

[5] M. LeMasurier et al., KcsA: It's a potassium channel (J. Gen. Physiol., 118:303-313, 
2001)

TEST CHANNELS – KcsA CHANNEL
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MIXED BD-MC SIMULATOR
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MIXED BD-MC SIMULATOR
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SYNTHETIC NANOPORES
• Solid-state nanopores are synthetic nanometer-scale pores located on an 
electrical-insulated membrane
• Adopted as single-molecule sensor

• Fabrication methods determine geometry and 
dimensions of the nanopores
• Detection principle is based on monitoring the 
variations of the ionic current flowing through the 
nanopore when a transmembrane potential is kept 
constant

Figures Removed due to copyright
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Back to Silicon ….... New Opportunities

J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko. Ion-beam sculpting at 
nanome- tre length scales. Nature, (412 (6843)):166{169, 2001.

Figure Removed due to copyright
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Conclusions

 Competences developed in the frame of CMOS Modeling 
and simulation can be easily re-used for different fields.

 Similarities in terms of mathematical formulation allowed 
to transfer the experience gained from the quantum-
mechanical analysis of MOSFETs to the electromagnetic 
simulation of optoelectronic devices.

 Particle-based simulation (e.g. Monte Carlo simulation of 
MOSFETs) can be exploited for the analysis of nano-scale 
biological systems that can be integrated into silicon 
technology to provide new functionalities.
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