Outline

3-D Quantum Mechanical Simulation of Nano-MOSFETs vs. Electro-Magnetic simulation

- The transverse mode representation
- **Applications to**
 - nMOS/pMOS I-V characteristics
 - Analysis of a super-steep subthreshold slope MOSFET
- Analogies to RCWA EM simulation
 - Application to solar-cell analysis

From Monte Carlo Device Simulation to Ionic Transport through Biological and Synthetic Nano-Scale Channels

NUMERICAL SIMULATION OF ION TRANSPORT THROUGH ION CHANNELS AND SOLID-STATE NANOPORES

Particle based simulation

- Particle based simulation has been largely applied to the analysis of MOSFETs since mid 80's
 - Hot Carriers
 - Quasi-Ballistic Effects
 - 2-D transport in ultra-thin SOI MOSFETs
- Competences acquired in the field of MOSFET simulation can be transferred to other fields
- The case for ion transport in cellular ion channels and nanopores

ION CHANNELS

• Ion channels are pore-forming proteins across the cell membrane that allow the cell to exchange ions with the extracellular environment

ION CHANNELS

- Ion channels are classified by the gating mechanism that determines their permeability
- Voltage-dependent
- Ligand-dependent

(RTS)

- Mechanosensitive channels
- Open and closed states are stochastic events determined by the gate mechanism
- Usually for a single channel:
- Conductance of open state has a typical mean value
- When a constant transmembrane potential is applied the current becomes a two-level random signal

SIMULATION DOMAIN

- A membrane separates two ionic baths
- Ions can cross the membrane only through the pore
- Rotational symmetry

SIMULATION DOMAIN

GENERATION

- For a synthetic nanopore the simulation domain is built imposing geometrical constraints
- An ion channel is defined by the charge distribution of the protein and the characteristics of the membrane

SIMULATION DOMAIN

SIMULATION APPROACHES

• Molecular Dynamics (MD)

- Interactions between every couples of atoms in the system are taken into account
- Highly accurate
- Computationally too expensive

• Poisson-Nernst-Planck Approach (PNP)

- Based on continuum charge distribution
- Became more and more critical when dimensions of the channel decrease
- Loss of characteristic effects (gating and selectivity)
- Brownian Dynamics (BD)
 - Something in between..

BROWNIAN DYNAMICS

- Something in between MD and PNP
- Only the trajectories of the ions are modeled
- Water molecules trajectories are neglected
- Interactions between ions and waters are included trough a friction force and random forces (collisions) acting on the ions
- Ions trajectories are generated according to the Langevin's equation:

Force actingForce due to theForce due to frictioncollisions withon ion ielectric fieldwith surrounding watersurrounding water

BROWNIAN DYNAMICS

- Only the trajectories of the ions are modeled
- Water molecules trajectories are neglected
- The dynamics of ions is described by Langevin's equation:

$$\boldsymbol{m}_{i} \dot{\boldsymbol{v}}_{i}(t) = -\boldsymbol{m}_{i} \boldsymbol{\gamma}_{i} \boldsymbol{v}_{i}(t) + \boldsymbol{F}_{i}(r(t)) + \boldsymbol{R}_{i}(t)$$

• Ion trajectories are computed according according Verlet algorithm [1]:

$$\begin{split} x\left(t_{n}+\Delta t\right) = & x\left(t_{n}\right)\left[1+e^{-\gamma\Delta t}\right]-x\left(t_{n}-\Delta t\right)e^{-\gamma\Delta t}\\ & +m^{-1}F\left(t_{n}\right)\left(\Delta t\right)^{2}\left(\gamma\Delta t\right)^{-1}\left[1-e^{-\gamma\Delta t}\right]\\ +m^{-1}\dot{F}\left(t_{n}\right)\left(\Delta t\right)^{3}\left(\gamma\Delta t\right)^{-2}\left[1/2\gamma\Delta t\left[1+e^{-\gamma\Delta t}\right]-\left[1-e^{-\gamma\Delta t}\right]\right]\\ & +X_{n}\left(\Delta t\right)+e^{-\gamma\Delta t}X_{n}\left(-\Delta t\right)+O\left[\left(\Delta t\right)^{4}\right] \end{split}$$

[1] Van Gunsteren and Berendsen, Algorithms for Brownian dynamics (Molecular Physics Vol. 45, No. 3,1982, 637-647)

ELECTROSTATICS

POISSON EQUATION $\nabla^2 \varphi(r) = -\frac{\rho(r)}{\varepsilon_0 \varepsilon(r)}$

Multiple dielectrics – inhomogeneous media $\boldsymbol{\varepsilon}_{0} \boldsymbol{\nabla} \cdot [\boldsymbol{\varepsilon}(\boldsymbol{r}) \boldsymbol{\nabla} \boldsymbol{\varphi}(\boldsymbol{r})] = -\boldsymbol{\rho}(\boldsymbol{r})$

Introducing the electric field and the polarization $E(r) = -\nabla \varphi(r)$ $P(r) = (\varepsilon(r) - 1)\varepsilon_0 E(r)$

Poisson equation takes the form:

$$\boldsymbol{\varepsilon}_{0} \boldsymbol{\nabla} \cdot \boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{\rho}(\boldsymbol{r}) - \boldsymbol{\nabla} \cdot \boldsymbol{P}(\boldsymbol{r})$$

ELECTROSTATICS

Introducing the polarization charge density: $h(r) = -\nabla \cdot P(r)$

And substituting it in the Poisson equation, we obtain

$$h(r) = \frac{1 - \varepsilon(r)}{\varepsilon(r)} \rho(r) - \varepsilon_0 \frac{\nabla \varepsilon(r)}{\varepsilon(r)} \cdot E(r)$$

- Polarization induced charges are calculated according to the ICC method [D. Boda, et al., *Phys. Rev. E*, 69, 046702, 2004.]
- Calculation of *h(r)* is performed numerically on a discretization grid for the surface boundaries where discontinuity of permittivity occurs.

ICC – Discretization of surface boundaries

- ICC methods work on an approximation of the phase boundary
- Surface elements are called "tiles" and can be flat or curved
- Tiles can be divided in subtiles

ELECTROSTATICS

ELECTROSTATICS

• Total potential energy

TEST CHANNELS – CATENARY CHANNEL

• The simulator has been tested with catenary channel test case [3]: Simulation of catenary channel

[3] M. Hoyles et al., *Computer simulation of ion conductance in membrane channels* (Phys. Rev. E. 58:3654-3661, 1998)

TEST CHANNELS – CATENARY CHANNEL

• The simulator has been tested with catenary channel test case [3]:

[3] M. Hoyles et al., Computer simulation of ion conductance in membrane channels (Phys. Rev. E. 58:3654-3661, 1998)

University of Bologna

TEST CHANNELS – CATENARY CHANNEL

• The simulator has been tested with catenary channel test case [3]:

[3] M. Hoyles et al., Computer simulation of ion conductance in membrane channels (Phys. Rev. E. 58,3654-3661, 1998)

University of Bologna

TEST CHANNELS – KcsA CHANNEL

• KcsA is a potassium channel of the bacterium *Streptomyces Lividans*

- Highly selective
- Highly permeable for K⁺ ions

TEST CHANNELS – KcsA CHANNEL

The potential profiles along the channel are in good agreement with those obtained by molecular Dynamics and Brownian Dynamics simulations [4]

Electrostatic potential

TEST CHANNELS – KcsA CHANNEL

• We compare our results with experimental data [5] **KcsA K⁺ currents**

MIXED BD-MC SIMULATOR

MIXED BD-MC SIMULATOR

SYNTHETIC NANOPORES

- Solid-state nanopores are synthetic nanometer-scale pores located on an electrical-insulated membrane
- Adopted as single-molecule sensor
 - Fabrication methods determine geometry and dimensions of the nanopores

• Detection principle is based on monitoring the variations of the ionic current flowing through the nanopore when a transmembrane potential is kept constant

Figures Removed due to copyright

Back to Silicon New Opportunities

Figure Removed due to copyright

J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko. Ion-beam sculpting at nanome- tre length scales. Nature, (412 (6843)):166{169, 2001

Conclusions

- Competences developed in the frame of CMOS Modeling and simulation can be easily re-used for different fields.
- Similarities in terms of mathematical formulation allowed to transfer the experience gained from the quantummechanical analysis of MOSFETs to the electromagnetic simulation of optoelectronic devices.
- Particle-based simulation (e.g. Monte Carlo simulation of MOSFETs) can be exploited for the analysis of nano-scale biological systems that can be integrated into silicon technology to provide new functionalities.

