Electronic Structure of Ge:GeO₂ interfaces for future CMOS

John Robertson, H Li, L Lin, K Xiong*, Engineering Dept, Cambridge University, UK *UT Dallas, jr@eng.cam.ac.uk

- Need for Ge
- Problems of Ge
- Defects in GeO₂
- Hydrogen in GeO₂

Future CMOS

- Replace SiO2 with high K oxide, HfO2
- Replace poly-Si gate with metal gate
- Replace Si channel with high mobility channel
- Change geometry

Need for Ge

- Ge has higher carrier mobilities than Si, particularly holes
- Ge pFET, GaAs nFET
- But Ge nFET, pFET also possible

	Si	Ge	GaAs
Band Gap (eV)	1.1	0.66	1.42
Electron mobility (cm ² /V.s)	1500	3900	8500
Hole mobility (cm ² /V.s)	450	1900	400

Problems

- GeO₂ Lack of insulating properties
- GeO₂ poor passivation
- GeO volatilisation
- Fermi level pinning near VB
 for nFET

Thermodynamics etc

- GeO₂ is considerably less stable than SiO₂
- Ge²⁺ more stable
- Band gap much less
- Ge-H bond strength not much less

	SiO ₂	GeO ₂
ΔH_{f} (eV)	-4.80	-3.27
Band gap (eV)	9.0	6.0
Si-H bond (eV)	3.3	3.1
CNL (of semiconductor) (eV)	0.3	0

Ge:GeO₂ interface

 Calculated 4.3 eV VB offset

CUED

GeO₂ Band Gap, Band Offsets from Photoemission

- A Ohta, S Miyazaki et al, eJ Surf Sci Nanotech 4 174 (2006)
- Band gap

VB offset

Band gap, band offsets

9 Band gap is much 8 lower for GeO₂ due to smaller CB offset 7 6 0.8 eV 3.3 eV • VB offset almost 5 Energy (eV) unchanged (O-like 4 character of VB top) 6.1 eV 9 eV 3 4.3 eV 4.5 eV 2 Calculation using Screened Exchange 0 Ge GeO2 SiO2

GeO₂ as gate oxide

 Small CBO explains use of relatively thick GeO2 layer in Ge FETs with GeO2 gate oxide (Toriumi, IEDM 2009)

GeO volatilisation

- GeO evolution causes defects and worse electrical behavior
- Needs supply of Ge to occur –
 - not for GeO₂ on Si
- GeO desorbs from surface
- O vac diffusion through GeO₂
- Toriumi (JJAP 2008), Kita (IEDM 2009, JAP 2010)

Si oxidation

- During initial stages of Si oxidation (< 5nm) reactive layer model
- Deal-Grove model based on O2 diffusion (interstitial)
- O¹⁷ isotope tracer analysis suggests not O₂ diffusion (Rochet, Adv Phys 35 237 1986)
- But Baumvol, PRB 60 1492 (1999) shows no mobility of Si²⁹.
- Hence O diffusion

Solid GeO structure

- GeO molecule
- Geo solid, at interfaces
- What is its structure?
- Iso-electronic to PbO
- But has structure of GeS, but with planar O site (as in Si3N4)
- Lin, Robertson, APL (2010)

PbO GeS GeO

GeO states

- GeO has filled Ge s states,
- VB of Ge s, O 2p.
- CB of Ge p states

Ge:GeO interface

 Ge:GeO epitaxial model used to calculate band offsets

CUED

Ge:GeO₂ interface

- Presence of GeO₂ and GeO at interface with small CBO is a trap
- means that GeO₂ should be avoided
- But GeO₂ needed to stop mobility degradation
- To stop poor reliability

Defects in SiO₂

- E' centers
- Neutral Oxygen vacancy in SiO₂ relaxes to a Si-Si bond

Defects in GeO₂

- E' centers
- Neutral Oxygen vacancy in GeO₂ relaxes to a Ge-Ge bond
- No states in gap (GGA)

Wavefunctions

CUED

Novel defects in GeO₂

- Ge-Ge bond breaks
- One 3-fold Ge atom flips through Ge-O, to bond to back Oxygen
- Makes 3-fold Ge +3-fold
 O

Novel defects in GeO₂

- 3-fold G gives gap state (sX)
- 3-fold O gives state at CB edge, localised on adjacent Ge sites
- Similar to 'Valence alternation pairs in GeO₂' by Pasquarello et al, APL (2010)

wavefunctions

CUED

Poor interface

- Si:SiO₂ interface is abrupt and smooth for T<1100C.
- Low scattering
- SiO_x dissociates into Si and SiO₂ (Lucovsky, JNCS 227 1 (1998)
- GeOx would not do same

solutions

- Remove GeO₂ layers
- LaGeO_x (Dimoulas etc)
- GeSr, etc (Kamata)

Improving mobility in HK-MG

- Separate HfO₂ from channel by 1 nm of SiO₂ improves mobility by screening remote scattering
- K Maitra,..IBM, JAP (2007)

CUED

Role of SiO₂ interfacial layer

- SiO₂ interfacial layer is retained,
- To limit mobility degradation due to remote phonon scattering, remote Coulomb scattering
- To limit interfacial defects/ reliability problems

Mobility degradation

 GeO₂ interlayer may also be needed to lessen degradation

Defect passivation

- Interface defects such as P_b centre (Ge dangling bond)
- Why is defect density D_{it} high?
- Why does not Hydrogen passivate them?

Ge dangling bonds

- Baldovino, APL 93 242105 (2008) does find Ge DB by electrically detected ESR
- Stesmans finds no ESR for 100% Ge (PRB 2009)

Ge dangling bonds

- Houssa says GeO₂ relaxation removes DBs
- Does not explain why so many Dit's !

Ge dangling bond + Hydrogen

- Poor passivation of Ge P_b centres attributed to
- Ge dangling bond lying below VB edge (Janotti + van de Walle, APL 2007)
- Pasquarello found it ok
- That is Ge⁻ and H⁻ repel

Hydrogen in Ge

 H c\an diffuse through Ge

H in GeO2

- H2 can diffuse through GeO2 as H2 interstitial
- And react with Ge dangling bond

Interstitial H atom

CUED

H in GeO₂

- Unlike in SiO2, H in GeO2 is a donor, level likes just at CB edge
- Donates electron
- Donates electron to Ge

8

6

2

0

Energy (eV) 5

H moves from Ge-H to O site

- H may go to O bond, not to Ge DB
- Tsertis and Pantelides, APL (2010)

Conclusions

- Ge is not so like Si
- Poor band offset avoid GeO₂ interfacial layer
- Non-stoichiometry
- Role of hydrogen