第一回複合創造領域シンポジウム

Interface state density of 3-D structured Si using charge pumping method

実験方法

Tokyo Tech. FRC¹, Tokyo Tech. IGSSE² K. Nakajima¹, S. Sato¹, K. Kakushima², P.Ahmet¹, K.Tsutsui², A. Nishiyama², N. Sugii², K. Natori¹, T. Hattori¹, H. Iwai¹

バンドギャップ中のD_{it}のエネルギー分布

 $|V_{GH} - V_{GL}|$

dI <u>cp</u> t f $D_{it}(E_2) =$ qAG fk BT dt f $\frac{|V_{FB} - V_T|}{|V_{FB} - V_T|} t_f \}$ $E2 = E_i - kT \ln \{v_{th}\sigma_n n_i\}$

1010 -0.5 0.5 -0.3 -0.1 0.1 0.3 E-E_i[eV] 価電子帯、伝導帯に近い方が、界面準位密度が高くなる

SiO₂/Si界面のU字型のD_{it}の分布を確認

立体Si構造の界面準位密度分布

総面積あたりの(110)面が増えたため。

まとめ

- ゲート付きのp/n接合デバイスを作製することでSOI, 立体Si構造のD_{it}を測定することができた。
- SOI構造では伝導帯、価電子帯から離れると界面 準位密度は小さくなり、U字型を示す。
- ゲート絶縁膜/チャネル界面の面積における (100)面の割合が小さくなるとDitが増加する。
- 立体Si構造においてSOI構造同様、伝導帯、価電 子帯から離れると界面準位密度は小さくなり、U字 型を示す。