第一回複合創造領域シンポジウム

Diameter-dependent injection velocity of ballistic Si nanowire MOSFETs

FRC,Tokyo Tech¹, IGSSE, Tokyo Tech² OYeonghun Lee^{1,2}, Kuniyuki Kakushima², Kenji Natori¹, and Hiroshi Iwai^{1,2}

Introduction

The Si nanowire MOSFET is one of the most promising devices, which yield further performance improvement without scaling

Diameter-dependent injection velocity is focused on

Degenerate electrons have high kinetic energy

The electron degeneracy has diameter dependence because of diameter-dependent density of states and gate oxide capacitance

Approach

Semiclassical ballistic transport model

Self consistent solution of Schrödinger and Poisson

Using these approaches, we calculate electrostatics and electron states at the top of the barrier

Results and discussion

We regard the $(\mu_s - E_{1min})$ as electron degeneracy

There is the highest injection velocity

Peak injection velocity corresponds to peak electron degeneracy

Volume inversion causes disproportionate $< \rho >$ and C_{eff}

Conclusion

Because of disproportionate density of states and effective capacitance, there was optimized electron degeneracy

We revealed there was the optimum diameter with the highest injection velocity

