第57回応用物理学関係連合講演会

シンポジウム「2020~30年代のナノエレクトロニクスデバイスの本命を考える」

Siナノワイヤの試作と 性能予測(ロードマップ)

佐藤創志、大毛利健治*、角嶋邦之、山田啓作* 東京工業大学 *早稲田大学

FET構造の違いによるリーク電流

SiナノワイヤFETに関する報告例

理想的なSS値、高いI_{ON}/I_{OFF}比 ただし、特殊なプロセス

>CMOSプロセスに適合したナノワイヤ作製プロセス √ブースター技術としてのナノワイヤ √ゲート・セミ・アラウンド構造(CMOSラインとの整合性)

>ナノワイヤの電気伝導特性 ✓I_{ON}-I_{OFF}特性

≻ナノワイヤー・プロセスロードマップ上の課題

<u>ナノワイヤFET作製方法</u>

Starting wafer: 300mm SOI (50 / 145 nm)

S/D & Fin Patterning <110>方向

Sacrificial Oxidation & Oxide Removal
DryOx 1000°C for 1 hour
(not completely released from BOX layer)

Nanowire Sidewall Formation (Oxide Support Protector) Gate Oxidation & Poly-Si Deposition Ion Implantation (As) into gate Poly-Si Gate Lithography & RIE Etching Gate Sidewall Formation & S/D Implantation Ni SALISIDE Process (Ni 9nm / TiN 10nm)

ナノワイヤFETのSEM/TEM像

作製したSiナノワイヤFETの観察像

標準的なプロセスでSiナノワイヤFETの試作に成功 L_g=65nm, T_{ox}=3nm, poly-Si, Ni-silicide

20nm以下のSiナノワイヤFETの断面形状とIoN

1本あたりのオン電流

1本あたりのオン電流(周囲長で規格化)

20nm以下のナノワイヤ径では、周囲長で規格化できない

高さ12nmのSiナノワイヤのI_{oN}のL_g依存性

L_gの微細化によりI_{ON}の増加を確認 特に12×19nm²の断面で高いI_{ON}

作製したSiナノワイヤFETの静特性

12 x 19nm²のSiナノワイヤー本当たり60µAを達成 (但し、 L_g=65nm, T_{ox}=3nm)

I_{ON}/I_{OFF}特性の比較

ー本当たりのI_{ON}/I_{OFF}に大きな性能の差は見られないが、周 囲長で規格化すると断面12×19nm²で良好な特性

S/D寄生抵抗の抽出

S/Dのサイドウォールの外を Niシリサイド化 n-FET 1.5 kΩ p-FET 12.7kΩ n-FETは全抵抗の10% がS/D+コンタクト抵抗 高いI_{ON} p-FETはプロセスの

最適化が不十分

ゲート長スケーリングでより高いI_{ON}が期待できる

Advanced Split-CV法による実効移動度の抽出

低電界領域:横幅の広いワイヤ形状で高い移動度高電界領域:横幅の狭いワイヤ形状で高い移動度

ナノワイヤ断面のキャリア濃度分布

MLDA法 2次元計算

カドの部分で高い電子濃度となる ワイヤ幅が小さいほどチャネル面積比が高い

本研究で得られた特性のベンチマーク

	This work	Ref [8]	Ref [9]	Ref [10]	Ref [11]	Ref [12]	Ref [13]	Ref [14]
Cross-sectional shape	Rect.	Cir.	Elliptical	Elliptical	Rect.	Cir.	Fin	Tri-Gate
NW Size (nm)	12x19	10	12	13x20	14	10		
Lg (nm)	65	8	65	35	100	30	25	40
EOT or Tox (nm)	3	4	3	1.5	1.8	2		
Vdd (V)	1.0	1.2	1.2	1.0	1.2	1.0	1	1.1
lon(µA) per wire	60.1	37.4	48.4	43.8	30.3	26.4		
Ion(µA/µm) by footprint	3117	3740	4030	2592	2170	2640		
lon(µA/µm) by cir.	1609	1191	1283	825	430	841	1296	1400
SS (mV/dec.)	70	75	~75	85	68	71	83	76
DIBL (mV/V)	62	22	40-82	65	15	13	83	89
lon/loff	~1E6	>1E7	>1E7	~2E5	>1E5	~1E6	~3E4	~1E4

注) Vov=0.8V, Vd;0.8V時は Ion;1500µA/µm

Siナノワイヤ単位ゲート幅当たりのオン電流のロードマップ

 $L_g=65$ nm, $T_{ox}=1.5$ nmで2014年にITRSの要求と同等 デバイススケーリングで更なる性能向上が期待できる

ここまでのまとめ

・従来プロセスで高いドレイン電流が得られるSiナノワイ ヤFETの実証を行った。

·20nm以下の径では周囲長の規格化で電流が増加

・フットプリントを考えるときは1本あたりのI_{on}が重要

・仮にL_g=65nm, T_{ox}=3nmで60µAのI_{ON}が得られ、L/Sで
22nmの加工で、1.3mA/µmのI_{ON}が良好なoff特性の下
で得られる。

 $L_g=65nm T_{ox}=3nmからのデバイススケーリング+High-k、$ ブースター技術の併用でさらに大電流が期待できる。

ナノワイヤー・プロセスロードマップ上の課題

1)ナノワイヤーの制御性 どの時代においてもリソグラフィー

の限界を使うとすれば、ダンベル構造では限界がある

ナノワイヤーの直接コンタクト技術の研究

- 2) SDの更なる低抵抗化 シリサイドプロセスの最適化
- 3) p-MOSの低抵抗SDの形成
- 4) V_{th}制御

5) ウエハーコストの低減 SOIからバルクSiへ

6)ナノワイヤートランジスタの物理の確立

なぜ、大きな電流が得られるのか? 本日は赤字のみ

ナノワイヤ長さによる ナノワイヤ径の制御の難しさ

SiNW with large S/D リソグラフィーで太くなる SiNW with NW S/D 細〈なるが、抵抗が高まる懸念

Siナノワイヤに直接コンタクトをとるプロセス

ナノワイヤー径の制御性を 上げるため、直接それを握 るコンタクト技術の研究

曲がった界面による仕事関 数、コンタクト抵抗に対する 実測と物理的理解

> 単ナノワイヤーでのフットプリン トの縮小が可能 SRAMなど

SiナノワイヤへのNiシリサイド形成の熱処理時間依存性

NiSi=1.4eV K. N. Tu, W. K. Chu, J. W. Mayer, Ni₂Si=1.5eV *Thin Solid Film*, 25, pp. 403-413 (1975).

Uniform formation of Ni₂Si was confirmed by AES. With high temperature (600 °C) annealing, Ni rich phase was formed for the silicidation of Si nanowire.

26

26

2-step annealing法によるNiシリサイド過剰形成の抑制

Annealing condition

2-step annealing法によりNiシリサイド形成の長さを半分にすることが できる

窒素の導入によるNiシリサイドの長さへの効果

窒素を導入したNiを用いることでシリサイド長さを 半分程度に抑制

我々の提案する、下支えナノワイヤープロセ スでは、必ずしもSOIは必要ではない?

- ●SiN HM (80 nm) 堆積
- STI Etching
- ●HDP-SiO2 堆積
- ●CMP
- ●STI-SiO2 Wetエッチング
- ●犠牲酸化(800°C Wet 10, 20, 40 nm)
- ●熱リン酸処理
- ●チャネルイオン注入
- ●犠牲酸化膜剥離(Wet)
- ●ゲート酸化 (3nm)
- ●CVD-PolySi堆積
- ●ゲートリソ・エッチング
- ●SideWall形成
- ●S/D イオン注入
- ●熱活性化 (1000°C 5 sec)
- ●層間膜堆積
- ●コンタクトエッチング

<u>謝辞</u>

本研究は、NEDOプロジェクトのご支援を頂きました。また、 研究に当たりご助言・ご協力頂きました、Selete第一研究部、 あすかIIラインの皆様に感謝致します。