Electrical Characterization of W/HfO₂ MOSFETs with La₂O₃ Incorporation

Hiroki Fujisawa¹, A. Srivastava³⁻⁴, Kuniyuki Kakushima², Parhat Ahmet¹, Kazuo Tsutsui², Nobuyuki Sugii², Takeo Hattori¹, C. K. Sarkar⁴ and Hiroshi Iwai¹

¹ FRC, Tokyo Institute of Technology
4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
²IGSSE, Tokyo Institute of Technology
³Birla Institute of Technology and Science-PILANI
⁴Jadavpur University
fujisawa.h.aa@m.titech.ac.jp

Electrical characterization of HfO_2 MOSFETs with La_2O_3 in corporation has been conducted. A shift in threshold voltage to negative direction had been observed with La_2O_3 incorporation. Moreover, g_m and subthreshold slope have been improved with La_2O_3 . 1/f noise measurement has revealed that HfO_2 gated MOSFET with incorporating La_2O_3 layer reduces the noise level .

Introduction

Hf-based-oxides have been used to replace SiO_2 gate insulator for advanced CMOS technologies. Recently, La_2O_3 , one of rare earth oxides, has attracted much attention as it has wide bandgap of 5.5ev and high dielectric constant of 24 with fairly nice interface property. Also, La_2O_3 has been used to control the threshold voltage to negative direction [1]

In this paper, we investigated the effect of La_2O_3 incorporation underneath HfO₂ layer on electrical properties of MOSFETs .

Device fabrication and characterization

HfO₂ gated N-channel MOSFET (W/L= 50μ m/2.5µm) with La₂O₃ incorporation was fabricated on a p-Si (100) with LOCOS isolation. The source and drain were pre-formed prior to the high-k deposition. No interfacial layer was intentionally formed before high-k deposition. 2-nm-thickness of HfO₂ and La₂O₃ with thickness of 4nm were deposited by e-beam evaporation in an ultra high vacuum chamber. Tungsten metal electrode was deposited on top of the high-ks by sputtering. The device structure is shown in fig 1(a). Annealing temperature was performed in forming gas ambient at 500 °C for 30 min.

In the same way, a MOSFET with 4-nm-thick- HfO_2 was fabricated as a reference. The equivalent oxide thickness of the MOSFET were 1.6 nm.

The process flow is summarized in fig 1(b) The electrical characteristics of the fabricated high-k gated MOSFETs were measured using Agilent4156C semiconductor parameter analyzer. 1/f noise measurements[2]. were carried out with a Agilent HP89410A vector signal analyzer.

Figure 1. (a) Fabrication process flow of high-k gated n-MOSFET (b) Structure of fabricated MOSFET

Result and Discussion

 I_d -V_g of the fabricated MOSFETs are shown in fig 2. The threshold voltage was shifted to negative direction by 0.45V with La₂O₃ incorporation.

(b)

	Vth (V)	SS (mV/dec.)
HfO₂ (4nm)	0.68	94.6
Hf (2nm) La (4nm)	0.23	71.8

Figure 2. (a) I_d - V_g characteristics

(b) parameter of these MOSFETs

Subthreshold swing (SS) of 94.6 mV/dec was improved to 71.8 mV/dec. with the incorporation of La_2O_3 presumably owing to better interfacial property.

The effective electron mobility (μ_{eff}) of the fabricated MOSFET is evaluated by split CV method [3].Figure 4 shows the calculated μ_{eff} also with HfO₂ and La₂O₃ MOSFETs that have the same EOT of 1.6 nm. The peak mobility was improved from 150 to 200 cm²/Vs by incorporating La₂O₃ underneath HfO₂ layer.

Figure 4. Effective electron mobility of La₂O₃ incorporated HfO₂ MOSFET. Samples are same EOT of 1.6 nm.

Figure.5 Drain Current Noise vs frequency at $V_d=0.05V$ and $|V_g-V_t|=0.2V$

Figure 5. shows the drain current noise (S_{id}) characteristics of the devices at V_d =0.05V and $|V_g-V_t|$ =0.2V for n-MOSFETs with W/HfO₂(4nm) /Si and W/La₂O₃(4nm) HfO₂(2nm)/Si In this figure, Sid of the MOSFET incorporated 4nm thickness of La₂O₃ was found to be lower than W/HfO₂(4nm) /Si. Noise level found to be reduced by incorporating La₂O₃ underneath HfO₂ layer.

Conclusions

By incorporating La_2O_3 under HfO₂ layer, a shift in threshold voltage to negative direction was observed. Moreover, the characterization of MOSFET was improved and the peak mobility was improved from 150 to 200 cm²/Vs. HfO₂ gated MOSFET with incorporating La_2O_3 layer showed lower 1/f noise characteristics.

References

- 1. K. Tatsumura, et-al, IEEE EDL 25,2.1.1(2008)
- 2. P.Srinivasan, ECS Transaction, 13(1) 163-169 (2008)
- C. G. Sodini, T. W. Ekstedt, and J. L. Moll, "charge Acccumulation and Mobility in Thin Dielectric MOS Transistors", Solid-State Electron., Vol.25, pp.833-841(1982).