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Abstract 
Silicon nanowire field-effect transistors (SiNW FETs) have been focused as one of the 

new FET structures to obtain good gate controllability owing to the immunity against 

short channel effects. In this thesis, we have investigated size dependent potential 

performances of SiNW FETs based on a combination of first-principle calculations and 

a ballistic transport model from Landauer’s formula. 

     Size dependent band structures of SiNWs aligned to [100] direction, ranging from 

0.77 to 2.69 nm in thickness, has been investigated by the first-principles calculation. 

Our first-principles calculation is based on the density functional theory (DFT) with the 

local density approximation (LDA). Based on the obtained band structures, we have 

extracted effective masses and eigenvalues of subbands in the SiNWs with various sizes, 

which strongly affect charge density and carrier velocity. In addition, the four unprimed 

minima have been split while they are 4-fold degenerate in sufficiently large wire, 

which is not involved in the effective mass approximation. As the size increases, 

bandgap has approached close to that of the bulk silicon as we expected. The electron 

effective masses have been increased as shrinking size in both unprimed and primed 

subbands. With the increase in the size, the effective masses close to 0.19 in the 

unprimed subband and 0.916 in the primed subband, which correspond transverse and 

longitudinal electron effective masses of the bulk silicon, respectively. 

     Combined with Landauer’s formula, electrical characteristics of ballistic SiNW 

FET have been estimated and an assessment of size dependent performances has been 

conducted. By using the calculated subband structure, size-dependent charge density 

and saturation injection velocity of each subband have been calculated by the 

self-consistent calculation of Schrödinger and Poisson equations, which is determined 



 3

by the balance between density of states and gate capacitance, both of which increase as 

size increases. As a result, large SiNW FETs have showed large on-current owing to 

steadily increasing gate capacitance by longer periphery. Energy gap between the lowest 

unprimed subband minimum and the source Fermi level has been decreased as 

shrinking size because decreasing the gate capacitance is more drastic than decreasing 

the density of states. It would also be supposed that the highest injection velocity is 

obtained at a certain width larger than 2.69 nm. Therefore, an assessment of ballistic 

drain current for practical multi-channel SiNW FET would show a trade-off between 

saturation injection velocity and the number of wires per unit width, determined by 

geometrical parameters. In conclusion, we have revealed that size-dependent band 

structures have substantially affected modulation of ballistic transport characteristics, 

and those effects of each subband have been changed as size modulates.
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1. Introduction 

1.1 Request of nanowire FETs 

     The scaling issues in planar metal-oxide field effect transistor (MOSFET) 

requires a better electrostatic control of the channel to reduce the off-state leakage 

current. Three dimensional (3D) MOSFETs, including Fin FETs and nanowire FETs, 

have been extensively studied to surpass the bulk or silicon-on-insulator (SOI) FETs.1) 

Generally, suppression of off-current enables to lower the threshold voltage so that large 

on-current can be obtained. However, one of the concerns for 3D MOSFET is the 

reduction in net-current as the cross section of the channel becomes small. One way to 

overcome this problem is to achieve a ballistic transport within the channel, so that large 

on-current can be obtained without degrading the electrostatic control of the channel. In 

order to achieve a ballistic transport, a short channel length with reduced scattering 

event is necessary, and it has already been reported that nanowire FETs have excellent 

short channel effect immunity.2) Recently, silicon nanowires (SiNWs) have been 

focused as one of the new FET structures to obtain a large on-current with high 

on-current/off-current ratio.3) Therefore, SiNW FETs can be regarded as one of the 

extremely scaled 3D MOSFET for future large scale integrated (LSI) devices instead of 

the planar FET (Fig. 1.1). 
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Fig. 1.1 Schematic structures of planar FET and nanowire FET. 
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1.2 Purpose of this work 

     As SiNWs have different physical properties from the bilk silicon, their band 

structures have been calculated by first-principles calculation4-7) or tight-binding 

method8-15). Their carrier transport have also been modeled by several methods.8-19) In 

this thesis, we investigate the size-dependent potential performance of SiNW-FETs 

based on a combination of the first-principles calculations with a ballistic FET model 

from a paper of Natori.18,20) First part of this thesis discusses the size-dependent band 

structures and electronic properties are addressed. Second part of this thesis assesses the 

on-current of the SiNW-FETs under ballistic transport based on the obtained band 

structures of SiNWs. In addition, linear charge density and saturation velocity of each 

subband are discussed to support the assessment. 
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2. Band Structures of Silicon Nanowires by First-principles Calculation 

2.1 First-principles calculation 

     The band structures of SiNWs were calculated by first-principles calculation 

based on density functional theory (DFT) with local density approximation (LDA) using 

pseudo-potential.21-25) The pseudo-potential is used for saving calculation cost. All the 

band calculations are performed with Tokyo Ab-initio Program Package (TAPP).26) DFT, 

LDA, pseudo-potential, el al. are explained in following subsections referring to ref 27 

and 28. 

 

2.1.1 Density functional theory (DFT) 

     Density functional theory (DFT) is one of methods to calculate total energy and 

wave functions of ground state. It is based by that ground state energy EGS can be 

yielded with a function of one electron density n(r). If it is satisfied, a problem to get 

wave function of many-body can be changed to the simple problem related to one 

electron density. 

     Minimum energy of one electron density becomes ground state energy, 

                    GSext EnFdnvnE ≥+= ∫ ][)()(][ rrr  (theorem 1)        (2.1) 

is proven by Hogenberg, Kohn, Levy, et al.21,22) Where E[n] denotes total energy, which 

is a function of one electron density, and vext(r) denotes external potential of position r 

described as 

∑ −≡
I

IIext vrv
R

Rr )()( , 

where vI and RI denote potential from nuclei I and nuclei position, respectively. Because 

wave function corresponding to one electron density is not unique, the E[n] is 
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impossible to be directly derived by arbitrary n. Ground state energy EGS, however, can 

be obtained from one electron density n. Here, F[n] described as 

n
ee

n VTnF minmin
ˆˆ][ ψψ +=  

is installed into eq. (2.1), where the F[n] denotes expectation value of electron kinetic 

energy T̂  + interaction between electron eeV̂  which has a wave function minimizing 

that expectation n
minψ  among anitisymmetric wave functions with the n(r). It is also 

proven that EGS is same with E[nGS], where nGS denotes one electron density of ground 

state (theorem 2). A problem to get wave function of many-body is eventually changed 

to the problem related to one electron density. So that, using a function of one electron 

density n(r), ground state energy EGS is obtained. Theorem 1 and 2 is proved in 

appendix A. 

 

2.1.2 Kohn-Sham equations 

     To calculate the ground state energy on DFT, Kohm-Sham imports independent 

particle system which yields one electron density n, where particles are 

non-interacted.23) Hereby, many-body problem can be changed to effective one electron 

problem described as 

                        )()()(
2

2
2

rrr iiiv
m

ψεψ =⎥
⎦

⎤
⎢
⎣

⎡
+∇−

h ,              (2.2) 

                               ∑=
N

i
in 2)()( rr ψ ,                    (2.3) 

where ψi(r) called Kohn-Sham orbit denotes wave function of one particle, and i 

summation upto N is carried out by order of small εi where i has to involve spin degree 

of freedom. In this system, F[n] can be devided by three components shown as 
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                          ][][][][ nEnUnTnF XCs ++= ,                (2.4) 

where the first term of eq. (2.4) indicates kinetic energy in virtual non-interacted system 

described as 

                     ∑∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇−=

N

i
iis d

m
nT rrr )(

2
)(][ 2

2
* ψψ h ,               (2.5) 

From (2.2), eq. (2.5) can be described as 

                        ∫∑ −= rrr dnvnT
N

i
is )()(][ ε .                   (2.6) 

Second term of eq. (2.4) indicates potential of coulomb interaction between electrons 

described as 

                        ∫∫ −
=

'
)'()('

2
][

2

rr
rrrr nnddenU .                   (2.7) 

Third term of (2.4) denotes exchange-correlation energy involving entire many-body 

effects. Substituting eqs. (2.6) and (2.7) in eq. (2.4), E[n] is changed to 

    ][
'

)'()('
2

)()()()(][
2

nEnnddednvdnvnE XCext

N

i
i +

−
++−= ∫∫∫∫∑ rr

rrrrrrrrrrε .  (2.8) 

It is variation principle to determine the v(r) involved in eq. (2.2). In other words, 

variation equation has to be yielded with one electron density of ground state. Firstly, 

from eq. (2.2), 

                         ∑ ∫=
N

i
GSi dnv rrr )()(δδε                       (2.9) 

is yielded. Using eq. (2.9), variation of eq. (2.8) is yielded described as 

∫∫∫ −−= rrrrrrrrr dnvdvndnvnE GSGSGSGS )()()()()()(][ δδδδ  

                   r
rrr

rrr d
n

nEdrnevn
GS

GSXCGS
extGS∫ ∫ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
++

)(
]['

'
)'()()( 2

δ
δδ .     (2.10) 
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Here, based on condition of an electron number invariability, 

∫ = 0)( rr dnGSδ , 

in order that δE[nGS] of eq. (2.10) becomes zero, v(r) is yielded as 

                   
)(

]['
'
)'()()( 2

r
r

rr
rrr

GS

GSXCGS
ext n

nEdnevv
δ

δ
+

−
+= ∫ ,            (2.11) 

where independence constants on r are neglected. In eq. (2.11), 

                           
)(

][)(
r

r
GS

GSXC
XC n

nE
δ

δμ =                       (2.12) 

is called exchange-correlation potential. Equations (2.2), (2.3) and (2.11) are called 

Kohn-Sham equations and they have to be solved by self-consistence. Substituting 

arbitrary wave function into eq. (2.3), n(r) is yielded. And substituting the yielded n for 

nGS in eq. (2.11), v(r) is obtained. In this turn, substituting the obtained v(r) in eq. (2.2), 

new wave function is yielded. This flow iterates until when yielded v(r) is same with 

v(r) before one step. If we know the EXC, we can exactly calculate one electron density 

and total energy of ground state. 

 

2.1.3 Local Density Approximation (LDA) 

     Exchange-correlation potential μXC(r) in eq. (2.12) is necessary for solving 

Kohn-Sham equation. However, correctly calculating exchange-correlation energy 

EXC[n] is very difficult. Thus, EXC[n] is calculated approximately. In this section, local 

density approximation, which is one of the approximate methods, is briefly explained. 

     Electron density in matter has spatial variation. When the spatial variation of 

electron density is gradual, we can consider as homogeneous electron gas. EXC[n] with 

electron density n(r) each point in space is described as 

                         ∫= rrr dnnnE XCXC )())((][ ε ,                  (2.13) 
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where εXC(n) denotes exchange-correlation energy of homogeneous electron gas. From 

eq. (2.13), μXC(r) in eq. (2.12) is transformed as 

dn
ndnn XC

XCXC
)()())(()( εεμ rrr += . 

εXC(n) can not be derived analytically, but it has numerically been derived by quantum 

Monte Carlo method.24) The results are imported in LDA.25) 

 

2.1.4 Pseudo-potential 

     To solve the Kohn-Sham equation is same as to solve a 3D differential equation. 

Wave functions can be expended by basis functions {χμ(r)} as shown by 

∑=
μ

μμχψ ii C)()( rr .                       (2.14) 

Kohn-Sham equation is solved by plane wave basis functions {exp(i(k+Gμ)･r)} where 

Gμ denotes a reciprocal lattice vector. Then the plane wave basis functions are 

orthogonal set. In the case of one-dimensional lattice, the smallest Gμ is 2π/R, and the 

other Gμ is a multiple of the smallest Gμ where R denotes period of lattice. A number of 

necessary plane wave basis functions affect to calculation cost, and the number of 

necessary plane wave basis are determined by a maximum Gμ. Because wave function 

of core electron (e.g. 1s of silicon atoms) is strongly localized, plane wave basis 

functions with sufficiently large wave number are required for an expression of the core 

electron. The large wave numbers make a number of necessary plane wave basis 

functions increase. They hardly affect solid sate properties because the core electron has 

much lower energy state then valence electron (e.g. 3s of silicon atoms) and is strongly 

bound to atoms. So that, we can neglect the core electrons and cut calculation cost 

because expression is done by only small wave numbers. Eliminating nodes of valence 
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wave function in the core area, the calculation cost can be also cut. These are concept of 

pseudo-potential.  

     In periodic corollary as crystal, wave function ψi(r) of eq. (2.14) is expended by 

plane wave basis functions as 

                       ( )( )∑ ⋅+=
μ

μμψ in Ci rGkrk exp)( ,                (2.15) 

where a suffix letter i is consist of wave number k and the other quantum numbers n: i = 

(k,n). Here, orthogonalized plane wave (OPW) is induced where core electrons 

independent of concerning solid state properties are neglected. Using Bloch’s condition 

and isolated atom’s wave functions with orbits c, bc(r), a wave function in crystal, bkc(r), 

is described as  

∑ −= ⋅

R
c

i
c beb )()( Rrr Rk

k . 

where R denotes lattice vectors and this express is called linear combination of atomic 

orbital (LCAO). In this case, there is an atom in each unit cell. Here, valence states have 

to be orthogonalizied with the core states. So that, the OPW denotes 

∑ ⋅⋅ −=
c

i
cc

i ebbe rk
kk

rk
k rrr )()()(ζ , 

as shown in fig. 2.1. Then the wave function of (2.15) can be altered by 

                         ∑ +=
μ

μμ
ζψ ii CGkr)( .                        (2.16) 

When the wave function of (2.16) is exactly derived, a new wave function φkn with the 

same coefficient Ciμ can be considered by 

( )( )∑ ⋅+=
μ

μμφ in Ci rGkrk exp)( . 

Then, the Kohn-Sham equation 

)()( rr kkk nnnH ψεψ =  
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is transformed to 

)()()( rr kkk nnnadVH φεφ =+ , 

where a new potential including with an added potential Vad is called pseudo-potential, 

and φkn is called pseudo wave function. However, the pseudo-potential does not assure 

exact wave functions on even valence states. Physics properties can not be derived 

exactly owing to incorrect wave function.  

 

Norm conserving pseudo-potential 

     Norm conserving pseudo-potential is induced for derivation of true wave function 

of valence states. Here, a radius of core area is denoted by rc. A pseudo-potential which 

yields that a wave function in r > rc is a real wave function and a wave function in r < rc 

is a pseudo wave function as shown in fig. 2.2 is assumed. A nodeless wave function as 

the pseudo wave function in fig. 2.2 has the smallest wave number and lowest energy 

state, so that pseudo-potential is more shallow and softer then real potential. Then wave 

function can be expended by fewer plane wave basis functions because a necessary 

maximum reciprocal lattice vector Gμ for expression by plane wave basis functions 

becomes small. When electron density in the core area derived from pseudo-potential is 

same as that derived by real potential, a potential of valence area is same as real 

potential of valence area. From above, the pseudo-potential has to satisfy following 

three conditions: 

1. Pseudo wave functions does not have any node in r < rc; 

2. Pseudo-potentials φps(r) are same as real potentials φt(r) in r > rc; 

3. Norm conserving is satisfied:  

∫∫
<<

=
cc rr

t
rr

ps rdrrd 22
)()( φφr . 
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(a) Plane wave function

(b) Core electron wave function

(c) OPW = plane wave function - core electron wave function

 

Figure 2.1 Core electron wave function with Bloch’s condition and OPW 
orthogonalized with that. 
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Figure 2.2 Concept of norm conserving pseudo-potential. Solid line indicates a true 
wave function of a radius vector for 3s state of Na. Dotted line indicates a pseudo wave 
function. Norm of pseudo wave function is same as that of true wave function in r < rc.
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2.1.5 Preparation for calculation 

2.1.5.1 Silicon nanowire models 

Calculated models of SiNWs were aligned to [100] direction ([100] SiNWs) with a 

square cross sectional shape. Figure 2.3 shows the cross sections of modeled SiNWs 

with thicknesses tSiNW of 0.77 and 2.69 nm. The dangling bonds of the atoms at the 

periphery were passivated by hydrogen atoms.  

 

2.1.5.2 Calculation parameters 

     As a periodic boundary condition, large supercells with neighboring wires 

separated by 0.7 nm are adopted. It has been confirmed that wires with 0.7-nm 

separation are enough to eliminate the interaction between the neighboring wires. 

Brillouin zone integration was performed by two k sampling points. The cutoff energy 

was set to 12.25 Ry, so as to reproduce the bandgap of bulk silicon to converge within 

4 %. 

     The evolution of the bandgaps and the electron effective masses m* were 

estimated using approximation of eigenvalues E at band edges based on the following 

equation. 

*

22

2m
kE h

= , 

where k and h  are the wave vector and reduced Plank’s constant, respectively. Wave 

vectors which have been used for the regression are within 4 pm-1 from the center wave 

vector with minimum energy and with a resolution of 2 pm-1. 
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0.77 nm 2.69 nm
 

Fig. 2.3 Models of [100] SiNWs with a tSiNW of 0.77 and 2.69 nm. Cross sections are 
square. Inside big circles and outside small circles represent silicon and hydrogen atoms, 
respectively. 
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2.2 Size-dependent band structures 

     The band structures of SiNWs were calculated by the first-principles calculation. 

In the next section, the band structures are also used to estimate transport parameters; 

linear charge density, carrier velocity, and current. Bandgaps, effective masses, and 

subband minima, which are purely extracted from the band structures, are shown in 

following subsection. 

 

2.2.1 Band structure 

     Figure 2.4 shows the band structures of [100] SiNWs with wSiNW ranging from 

0.77 to 2.69 nm. Direct bandgaps at Γ point are obtained for both SiNWs, which is in 

contrast to the bandgap for bulk silicon. While increasing the wSiNW, minima of four 

unprimed subbands at Γ point move toward lower energy due to relaxation of the 

quantum confinement, and eventually they will coincide with the minima of primed 

bands of the bulk silicon. Valley splitting of the four unprimed minima occurs while 

they are in 4-fold degeneracy in sufficiently large wire, which is in good agreement with 

previous reports.4,9-11,14,15) A SiNW with wSiNW of 0.77 nm has two 1-fold and one 2-fold 

degenerate unprimed band, whereas a SiNW with wSiNW of 2.69 nm has 1-fold and 

3-fold degenerate unprimed bands. One of the noticeable evolutions with wSiNW is that a 

primed subband moves toward lower unprimed subband minima, which have strong 

impact on ballistic on-current, which will be discussed in section 3. These subband 

minima evolution is numerically shown in section 2.2.4. 
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Fig. 2.4 Band structures of [100] SiNWs with wSiNW ranging from (a) 0.77 to (f) 2.69 
nm. The longitudinal axes indicate relative values from each band edge. Small SiNW 
has few subbands for strong quantum confinement. 



 20

2.2.2 Bandgap 

     Our calculation also showed that a bulk silicon have an indirect bandgap of 0.58 

eV, and conduction band minimum was located at a point 84 % on the way from Γ to X. 

Although bandgaps estimated by DFT usually underestimate the experimental values, 

the tendencies on different size of the wire sample can be discussed. Figure 2.5 shows 

the wSiNW dependence of bandgaps on [100] SiNWs. The bandgaps of the SiNWs 

become wide as the wSiNW decreases, and a large bandgap of 2.55 eV was obtained with 

a 0.77-nm thick SiNW. As the wSiNW increases, the primed subband moves toward 

unprimed subband minima and bandgaps approaches close to that of the bulk silicon, 

which is calculated by DFT in this case. The bandgaps estimated by DFT are about 0.5 

eV smaller than values of other works with tight-binding method. 9,10,13) However, the 

tendency shows a good agreement. 
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Fig. 2.5 wSiNW dependence of bandgaps. The obtained bandgaps are underestimated 
because of DFT calculation. As wSiNW increases, the bandgap closes to that of bulk 
silicon. 
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2.2.3 Electron effective mass 

     Figure 2.6 shows wSiNW dependences of electron effective mass m* of the lowest 

unprimed and primed subband in [100] SiNWs. The m* becomes light as the wSiNW 

increases in both unprimed and primed subband. With the increase in the size, one can 

expect that the m* moves to 0.19 m0 in unprimed subbands and 0.916 m0 in primed 

subband, which corresponds to a transverse and longitudinal m* of primed band minima 

of the bulk silicon respectively, where the m0 denotes the electron mass. These wire 

size-dependent parameters are in good agreement with previous works too. 9) 
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Fig. 2.6 wSiNW dependence of m*. Upper solid circles indicate effective masses of primed 
subband and lower open circles indicate them of unprimed subband. Both of them 
decrease as the wSiNW increases.
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2.2.4 Subband minima 

     Size-dependent i-th subband minima Eimin are shown in fig. 2.7. E0min indicates 

the lowest subband minimum, which is the conduction band minimum. As wSiNW 

increases, subband minima close to each other, and second groups of unprimed 

subbands below (E0min + 0.25 eV) are shown in 2.30- and 2.69-nm width. Evolution of 

primed subband minima, which are connected by solid line, is important to discuss 

transport parameters in the section 3.2. 
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Fig. 2.7 wSiNW dependences of the subband minima Eimin based on E0min. Solid circles 
(cross point) indicate 1-fold (2-fold) degenerate subband minima. Primed subband 
minima are connected by solid line. 
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3. On-currents for Silicon Nanowire FETs under Ballistic Transport 

3.1 One-dimensional ballistic transport model (Natori model) 

     The ballistic transport characteristics of SiNW-FETs were derived from the 

derived band structures. An estimation of ballistic transport characteristics can be 

performed based on the Natori model.18,20) The model is based on one-dimensional 

ballistic current. Calculated drain currents indicate theoretical maximum values 

obtained in same conditions. To investigate performance of each SiNW FET, we also 

compare transport parameters; Fermi level of source sμ , linear charge density |Q|, 

saturation velocity vsat, and a single wire on-current ION. In addition to account about 

those parameters, potential model for a nanowire FET, equations, quantum capacitance, 

example calculation, et al. are explained in following subsections. 

 

3.1.1 Basic concept for the ballistic nanowire FET model 

     Potential model for a nanowire FET is briefly explained in the followings. Figure 

3.1 (a) shows a potential profile from a source to a drain, where potential energy along 

the channel is the highest and not gradient at the bottleneck. The charge of forward and 

backward current at bottleneck of the channel is used to estimate the ballistic drain 

current. Figure 3.1 (b) shows an E-k dispersion of a channel and formed Fermi levels at 

the bottleneck, when a gate voltage Vg above threshold voltage Vth is applied. The μs and 

μd indicate Fermi levels of source and drain, respectively. The μs and μd have a relation 

of 

dsd qV−= μμ , 

where Vd denotes drain voltage. States of dE/dk ≥  0 and dE/dk ≤  0 fead forward and 

backward currents, respectively. The charges of each current are shown in fig. 3.1 (c) 
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which shows density of states (DOS) versus energy. Charge difference between the 

forward and the backward current, which are integral of the DOS over energy range 

from μd to μs at T = 0 K, determines the drain current per a single wire Id. 

 

Quantum capacitance 

     A transverse band diagram at the bottleneck is shown in fig. 3.2. A Gate overdrive 

(Vg – Vth) is applied for variation within the insulator φi and a band drop (μs – E0min or μd 

– E0min) within the channel. Multiplying gate capacitance Cg and φi is same with the 

charge, stored carriers. Unless there is the band drop, the enough carriers can not be 

stored in the channel. The band drop causes that all of the gate overdrive (Vg – Vth) is 

not applied for gate capacitance Cg, and it seems like a decrease in gate capacitance for 

the same (Vg – Vth). The decrease in capacitance is represented as an addition of series 

connected capacitance, and the series connected capacitance is called the quantum 

capacitance Cq. An effective capacitance Ceff including the quantum capacitance is also 

adopted. 
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Fig. 3.1 (a) Potential profile from a source to a drain of nanowire FET. There is 
bottleneck point where forward and backward current are calculated. (b) Parabolic E-k 
dispersion, and formed Fermi levels at the bottleneck when Vg and Vd are applied. States 
of dE/dk ≥  0 (dE/dk ≤  0) become forward (backward) current. (c) DOS versus 
energy. A right slashed (left open) area indicates an amount of charge for forward 
(backward) current at T = 0 K. 
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Fig. 3.2 a) A transverse band diagram when a gate overdrive (Vg – Vth) is zero. A value 
of 0-th subband minimum E0min is same with a value of Fermi level of source μs. b) A 
transverse band diagram when (Vg – Vth) and a drain-voltage Vd are larger than zero. 
Grey and slashed area indicates charge of forward and backward carriers, respectively. 
The φi denotes variation within the insulator.
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3.1.2 Equations 

     From one-dimensional tunnel current simplified by neglected transmit of states 

below potential bottleneck, one-dimensional drain current is expressed by1 

                    ( )∑ ∫
∞

−=
i Ei

dsd dEEfEfqI
min

),(),( μμ
πh

,             (3.1) 

where q and h  denotes elementary charge and reduced Plank’s constant, respectively.  

In section 2, elementary charge is denoted by e, and e is usually used as elementary 

charge in physics. The Eimin denotes minimum of i-th subband, where subband 

minimum belong to conduction band minimum (CBM) is E0min, and f(E, μs) denotes 

Fermi distribution function described as 
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Importing band structures which have band maxima Eimax or branches, integration of eq. 

(3.1) can be carried out. So that, Id can be derived as 
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where gi denotes degeneracy of i-th subband, and Eimin and Eimax with suffix plus 

(minus) indicates maximum and minimum energy in the positive (negative) velocity 

branches of the i-th suband as shown in fig. 3.3. However, Eimax can be neglected when 

they are much higher than Fermi level of source μs. In our calculation, Eimax is neglected 

because they are much higher than Fermi level of source μs as shown in sections 2.2.1 

                                                  
1 Appendix B 
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and 3.2.1. Thus, the drain current Id can be reduced as 

             ∑ ∑ ⎟⎟
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where the total current is the summation of carrier flows in each subband and branch. 

The G0 (= q2/πh ) denotes the quantum conductance of 77.8 μS. Equation (3.3) is a 

simplified equation by neglecting maxima of subbands which are much higher than 

the μs. In this equation, tunnel current is also neglected. To calculate eq. (3.3), we need 

the μs in addition to the Eimin. When the gate overdrive (Vg – Vth) and the linear gate 

capacitance Cg are given, the μs can be calculated by 

                         )( min0

q
EVV

C
Q s

thg
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−
−−=

μ ,                   (3.4) 

where |Q| denotes linear density of carriers along channel, and quantum capacitance Cq  

is derived from the second term of right hand side of eq. (3.4) as shown in fig. 3.2 (b). 

The |Q| can also described as                           
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where Di+(E) and Di-(E) denote density of state of the positive and negative velocity 

branches of i-th subband. In this case, Eimax can be neglected too. Integration over E in 

eq. (3.5) is also changed to integration over k in order to easier calculation using derived 

E-k dispersion. So that, the |Q| is reduced as 
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Fermi distribution functions are integrated within the Brillouin zone. The Cg of 

gate-all-around structures of the square cross section can not be estimated analytically, 

so that we approximately adopt a cylindrical model as shown in fig. 3.4. The Cg of the 

cylindrical model can be derived as 

                             
⎟
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⎞

⎜
⎝
⎛ +

=

r
tr

C
ox

g

ln

2πε ,                       (3.7) 

where r indicates a radius of circle having the same cross-sectional area as square 

cross-sectional SiNW adopted for band structure calculation, and ε indicates dielectric 

constant of the insulator. The μs is derived by solving eqs. (3.4) and (3.6) simultaneously. 

Finally, if μs is substituted to eq. (3.3), we can obtain the Id.  
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Fig. 3.3 Eimin and Eimax with suffix plus (minus) in branches of i-th subband are 
represented. 
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Fig. 3.4 Cross-sectional view of FET in gate-all-around structure. We assumed SiO2 
with tox of 1 nm as an insulator in our calculations. Cylindrical model with same 
cross-sectional area is adopted for estimation of Cg. 
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3.1.3 Equation transformation for easy discussion 

     Conventionally, ballistic Id can be expressed by the following equation, 

                           injthgeffd vVVCI )( −= ,                      (3.8) 

where the vinj denotes a mean velocity of the charge at the bottleneck point, which is 

called mean injection velocity. Ceff denotes linear effective capacitance considering the 

quantum capacitance Cq which is derived as 

 )()( min0
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⎬
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⎩
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⎧ −

−−=−
q
EVVCVVC s

thggthgeff
μ . 

Replacing vinj by saturation mean injection velocity vsat in eq. (3.8), which consist of 

only forward current except backward current, the saturation Id is obtained. Here, 

on-current is defined as the saturation Id. Also replacing Ceff(Vg – Vth) by |Q| in eq. (3.8), 

single-wire on-current ION can be described as 

                              satON vQI = .                          (3.9) 

Considering results with eq. (3.9) helps understanding related to parameters to 

determine the ION. 
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3.1.4 Calculation example 

Figure 3.5 shows an example for Id-Vd characteristic of [100] SiNW with wSiNW of 

2.69 nm which was calculated in various gate overdrives (Vg – Vth = 0.1, 0.4, 0.7 and 1.0 

V) at room temperature (T = 300 K). SiO2 with tox of 1 nm is adopted as the gate 

insulator. 
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Fig. 3.5 An example for Id-Vd characteristic at T = 300 K. The model is square SiNW 
with wSiNW of 2.69 nm. Applied gate overdrives range from 0.1 V to 1.0 V. 



 33

3.2 Size-dependent transport characteristics 

     The transport parameters are derived under gate overdrive Vg – Vth = 1.0 V at 300 

K. The cylindrical wire model with same cross-sectional area is approximately assumed, 

and 1-nm-thick SiO2 is adopted as a gate insulator in the same way as the example 

calculation in previous section 3.1.5. Calculated Fermi level of source μs, linear charge 

density |Q| and effective capacitance Ceff, saturation mean velocity vsat, and on-current 

ION are shown in following subsections, where those parameters are divided into each 

subband. Finally, in the case of parallel multi-channel FET, on-current and capacitance 

evolution is also shown. 
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3.2.1 Fermi level of source 

     Based on a wSiNW dependence of the subband minima as shown in fig. 2.5, a 

size-dependent μs is shown in fig. 3.6. The μs increases as wSiNW increases, and 

gradually saturates in large wires. Here, the μs is determined by the balance between 

DOS and effective capacitance, both of which increase as wire size increases. The μs of 

further larger wire is expected to decrease due to sinking of the upper subbands, which 

have the larger degeneracy and DOS. Subbands in the energy range in this figure mainly 

determine transport characteristics because the states higher than about 0.1 eV above the 

μs are almost unoccupied based on Fermi distribution, resulting in little contribution to 

on-current. 
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Fig. 3.6 wSiNW dependences of the subband minima and μs based on E0min. Solid circles 
(cross point) indicate 1-fold (2-fold) degenerate subband minima. Primed subband 
minima are connected by solid line. Open circles with dotted line indicate the μs. 
Evolution of primed subband minima and the μs are important to investigation of 
on-current. 
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3.2.2 Linear charge density and effective capacitance 

     Figure 3.7 shows linear charge density |Q| of each subband versus the wSiNW. The 

Linear charge density is the charge density per unit wire length. Top of the bars 

indicates Cg(Vg – Vth), where Cg derived by eq. (3.7), which has the same numerical 

value as the Cg because of gate overdrive Vg – Vth = 1.0 V. This capacitance is almost 

proportional to the wSiNW as excepted. The capacitance, however, is not exactly 

proportional to the wire periphery in relatively small wires as compared with gate 

insulator thickness tox, and Cg-intercept of approximately linear slope is not zero in that 

case. In fact, all of the (Vg – Vth) is not applied to the nanowire channel due to series 

connection of the quantum capacitance Cq. On this account, the effective capacitance 

Ceff, which denotes effective capacitance for the same (Vg – Vth), smaller than the Cg, 

and the obtained μs are 0.09 ~ 0.15 eV for Vg – Vth = 1.0 V, so that the Ceff is 9 ~ 15 % 

smaller than the Cg. The charge in unprimed subband is almost constant the wSiNW larger 

than 1.54 nm, and excess charge is stored in primed and other higher subbands. Charge 

in other higher subbands shows up only in the 2.69-nm wSiNW, where the higher 

subbands stay close to μs. 
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Fig. 3.7 wSiNW dependences of |Q| of each subband. Top of the bars indicates the Cg(Vg – 
Vth). The Ceff(Vg – Vth) is represented by rest bars except open dotted square, loss by Cq. 
Slashed, black and grey square area indicate linear charge density in unprimed, primed, 
other higher subbands, respectively. 
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3.2.3 Injection velocity 

     Not only m* but also the position of subband minima affects vsat, which denotes 

the injection velocity for saturation current. When μs is large, the vsat becomes large 

unless there is subband minimum near the μs, because occupied states with the small 

kinetic energy in higher subbands make the vsat to decrease. Basically, subbands at a 

high energy are disadvantageous for vsat enhancement. The subband minima depend on 

the geometric structures of SiNWs, and the subband separation decreases as the SiNWs 

size increases. Therefore, the vsat decreases in large wires unless the μs becomes 

sufficiently large. 

      Figure 3.8 shows vsat of each subbnad versus the wSiNW. The decrease of m* as 

well as the increase of μs contributes increasing of the vsat of entire subbands. vsat of the 

primed subband is much smaller than vsat of the unprimed subbands, and the both of 

them increase as the wSiNW increases. It is also caused by the both subband minima 

sinking below μs and the m* decreasing. Despite the increase of μs and decrease of m*, 

the vsat of entire subbands gradually saturates and peaks out at 2.30-nm wSiNW, where 

most of the excess charge distributes in the primed subband with small vsat as shown in 

fig. 3.7.  
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Fig. 3.8 wSiNW dependences of vsat of each subband. Solid square, open circle and solid 
circle indicate vsat of entire subbands, unprimed subbands and unprimed subband, 
respectively. The vsat of entire subbands peaks out at wSiNW of 2.30 nm. 
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3.2.4 On-current 

     Multiplying the extracted |Q| and vsat of entire subbands, the ION is obtained as 

shown in fig. 3.9. Although linear charge density |Q| of unprimed subbands is almost 

constant in a large wire, the on-current of unprimed subbands steadily increases due to 

the vsat increasing. A large ION is obtained from large SiNWs because the increase of 

linear capacitance is more dominant for current increase than variation of entire 

subbands’ vsat. In addition, it can cause the rapid decrease of the μs and the total vsat that 

subbands in sufficiently large degeneracy move down in large wire, so that the ION 

would decrease. 
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Fig. 3.9 wSiNW dependences of ION of each subband. Top of the bars indicates the total 
ION. Slashed, black and grey square area indicate on-current of unprimed, primed and 
other higher subbands among total ION, respectively. 
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3.2.5 Multi-channel FET 

     To discuss the performance of a multi-channel FET with parallel SiNWs, two 

factors have to be considered; how much ION can be obtained, and how many wires can 

be aligned in the same width. We assumed the multi-channel SiNW-FET model shown 

in fig. 3.10. Cylindrical wires, which have the same cross-sectional area as the square 

cross-sectional wires whose band structures are calculated, are adopted as an 

approximation. The influences of the neighboring wires are neglected for simplicity. 

The number of wires per 1-μm width N is calculated by 1-μm/(2r + 2tox + spacing). 

wSiNW dependences of N|Q| with a spacing of 0 and 5 nm are shown in fig. 3.11 (a). It is 

expected that the N|Q| becomes constant when wSiNW is large enough, because Ceff is 

proportional to wSiNW in sufficiently large wires, and N tends to be inversely proportional 

to wSiNW when (2tox + spacing)/wSiNW is sufficiently small. In the case of nano-sized 

wires, the N|Q| increases as the wSiNW increases. Fig. 3.11 (b) shows wSiNW shows wSiNW 

dependences of NION. The NION evolution shows a gentler slope in large wires because 

of the nonincreasing vsat of entire subbands in the large wires. 

     Weakly confined wires will have sufficiently large number of degenerate 

subbands sinking below μs, so that vsat will decrease. Then the NION will decrease due to 

constant N|Q| of large wires. In addtion, a qualitatively similar size-dependent NION can 

be shown in other one-dimensional ballistic FETs as well as in [100] SiNW FET. It is a 

matter of course that the size-dependent linear charge density is almost the same 

because the Cq can be neglected on account of sufficiently small μs. No matter what 

kind of semiconductor is imported, well-confined nanowires have faster carriers due to 

their few subbands in opposition to weakly confined wires, and over-confined 

nanowires have slower carriers with purely small μs due to small linear capacitances, so 
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that it can also be expected that qualitative analyses of size-dependent vsat are similar. 
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Fig. 3.10 Model of the multi-channel SiNW-FET. There is one SiNW-FET per (2r + 2tox 

+ spacing). A number of SiNWs per 1-μm width, N, is calculated by 1-μm/(2r + 2tox + 
spacing). 
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4. Conclusions 

     Size-dependent bandgaps and electron effective masses of the [100]-directed 

SiNWs with the width ranging from 0.77 to 2.69 nm have been calculated by 

first-principles calculation. The prominent features of SiNWs are the increase in 

bandgaps, the band splitting, and the increase in effective masses due to quantum 

confinement. Ballistic drain-current estimations from the calculated band structures 

have revealed the size dependence of the Fermi level of source μs, the linear charge 

density |Q|, the saturation mean injection velocity vsat, which determines the single-wire 

on-current ION. Subband structure and parameters which contribute to the on-current 

evolution have been clarified by systematical analyses. The ION has steadily increased 

with large wire size owing to the increase in |Q| despite peaked vsat of the entire 

subbands. In addition, size-dependent band structures have much effect on modulation 

of ballistic transport characteristics, and those effects of each subband have also been 

changed as size modulates. Finally, an assessment of the ballistic drain-current for 

practical multi-channel SiNW FETs has revealed a trade-off between vsat and the 

number of wires N, determined by geometrical parameters, spacing and wire-size, which 

is in contrast to the case of a single wire. 
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Appendix A Proof of theorem 1 and 2 of density functional theory 

Theorem 1 

     Minimum of E[n], which is a function of one electron density, becomes ground 

state energy, 

                     GSext EnFdnvnE ≥+= ∫ ][)()(][ rrr . same with eq. (2.1) (A･1) 

Proof 

     In eq. (A･1), n(r) have to satisfy with N-representability. N-representability is 

that the one electron density n(r) for N electron is obtained from anitisymmetric wave 

function ψn described as 

                  NN
n dxdxdxxxNn LL 21

2

21 ),,,()( ξψ∫=r ,   ),( ξr≡x , 

where x consist of position coordinate r and spin coordinate ξ. 

     Let’s prove theorem 1 upon this N-representability. Hamiltonian Ĥ  of interact N 

electron is described as 
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where extV̂  denotes Hamiltonian of external potential, and e and h  denotes 

elementary charge and reduced Plank’s constant respectively. Using wave function of 

ground state ψGS, ground state energy is described as 

                        GSeeextGSGS VTVE ψψ ˆˆˆ ++= .                 (A･2) 

From N-representability, expectation value of external potential extV̂  with ψmin is 

transformed as 
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Expectation value of extV̂  also satisfies 
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because eq. (A･3) shows that the expectation value is determined by only n(r) and n
minψ  

is one of the ψn. Finally, Using eqs. (A･3) and (A･4), 
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is satified. Using this relationship, E[n] satisfies 
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Be careful n
minψ  is wave function which minimizes the F[n]. We can see that E[n] has 

same Hamiltonian with EGS from eqs. (A･2) and (A･5). Therefore, the EGS equals 

minimum of the E[n]. 
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Theorem 2 

     EGS is same with E[nGS], where nGS denotes one electron density of ground state, 

described as 

∫ +== ][)()(][ GSGSextGSGS nFdnvnEE rrr . 

Proof 

               GSGS n
eeext

n
GSeeextGS VTVVTV minmin

ˆˆˆˆˆˆ ψψψψ ++≤++          (A･6) 

is shown from theorem 1, since GSn
minψ  minimizes expectation value of only T̂  + eeV̂  

and left part is ground sate energy. Here, it is assumed that ground state is not 

degenerate. Because the ψGS yields same nGS(r) with the GSn
minψ  although ψGS can be 

different wave function with GSn
minψ , 

                       GSGS n
ext

n
GSextGS VV minmin

ˆˆ ψψψψ =                 (A･7) 

stands up. Substituting (A･7) into (A･6), 

                     GSGS n
ee

n
GSeeGS VTVT minmin

ˆˆˆˆ ψψψψ +≤+              (A･8) 

is derived. Here, from definition of F[n], 

                     GSGS n
ee

n
GSeeGS VTVT minmin

ˆˆˆˆ ψψψψ +≥+              (A･9) 

is also obtained. From inequality sign of eqs. (A･8) and (A･9), it is shown that left part 

and right part of those equations have same expectation value. Therefore,  

][][)()(ˆˆˆˆˆˆ
minmin GSGSGSext
n

eeext
n

GSeeextGSGS nEnFdrrnrvVTVVTVE GSGS =+=++=++= ∫ψψψψ

is derived.
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Appendix B Landauer’s formula for one-dimensional current 

     Figure B ･ 1 (a) shows an one-dimensional tunnel current. Using Fermi 

distribution function f, the one-dimensional tunnel current flowing from left to right IL 

and from right to left IR are described as 

                      ∫
∞

=
LE

LL dEETEvEDEfqI )()()(),( μ               (B･1) 

and 

                     ∫
∞

−=
RE

RR dEETEvEDEfqI )()()(),( μ ,              (B･2) 

where q denotes elementary charge. EL (ER) and μL (μR) denote a band minimum and 

Fermi level on the left (right), respectively. D(E), v(E) and T(E) also denote density of 

states, velocity and transmission coefficient, respectively. The transmission coefficient T 

is not dealt strictly in this discussion. In the case of one-dimension, a number of states 

in dE over energy, D(E)dE are described as 

π2
2)( dkdEED =  

and 

                             
dE
dkED

π2
2)( = ,                        (B･3) 

where first coefficient 2 on the left hand side indicates two spin states. One-dimensional 

v(E) can be also described as 

                            
dk
dE

m
kEv

h

h 1)( == ,                      (B･4) 

where h  and m denotes reduced Plank’s constant and mass, respectively. Substituting 

eqs. (B･3) and (B･4) in eqs. (B･1) and (B･2) and eliminating transmission coefficient 

of eq. (B･2) between EL and ER, currents are described as 
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∫
∞

=
LE

LL dEETEfqI )(),( μ
πh

 

and 

∫
∞

−=
LE

RR dEETEfqI )(),( μ
πh

. 

Therefore, total current is described as 

        ( )∫
∞

−=+=
LE

RRRL dEETEfEfqIII )(),(),( μμ
πh

.     (B･5) 

At temperature of 0 K, eq. (B･5) is transformed into simpler equation as 

TqI LR )( μμ
π

−=
h

 

                             TVq
d

hπ

2

= , 

and conductance G is described as 

                              TqG
hπ

2

= .                           (B･6) 

Equation (B･6) is the simplest Landauer’s formula. 

     In our one-dimensional ballistic current model, there is not potential barrier along 

the channel, and current at the bottleneck is considered as shown in fig. A･1 (b). 

Replacing EL, μL and μR by i-th subband minimum Eimin, Fermi level μs of source and 

Fermi level of drain μd in eq (B･5), drain-current Id of i-th subband is described as 

                    ( )∫
∞

−=
min

),(),(
iE

dsd dEEfEfqI μμ
πh

.                 (B･7) 

Considering charge in this discussion, we have to pay attention to the subband minimum. 

Although there is not charge at the potential barrier in the case of tunnel current, the 

sum of charge |Q| into right and left side is calculated by 
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= ∫∫

∞∞

LR E
L

E
R dEEfEDdEEfEDqQ ),()(),()( μμ . 

In the case of ballistic current, the sum of i-th subband charge |Qi| flowing forward and 

backward at the bottleneck can also be calculated by 

               ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= ∫∫

∞∞

minmin

),()(),()(
ii E

d
E

si dEEfEDdEEfEDqQ μμ ,         (B･8) 

where minima of band of each side are same in contrast to the case of tunnel current 

because forward and backward current have same states at the bottleneck. Besides, the 

reason why Fermi level of source and drain are shown at the bottleneck is carriers of 

both far sides, the source and the drain, don’t get or loose energy. Finally, eqs. (B･7) 

and (B･8) are used for estimation of ballistic current in this thesis. 

EL

ER

μL

μR

Vd

(a)

Eimin

μs

(b)

μd
Vd

At the bottleneck

 
Fig. B･1 (a) A band diagram under one-dimensional tunnel current, when drain-voltage 
Vd is applied. A value of difference between current into right side and into left side 
becomes total current. On the right hand side, states below EL can not transmit. (b) A 
band diagram under at the bottleneck of one-dimensional ballistic current (see section 
3.1.1). In contrast to (a), band minimum of current into left side is same with that into 
right side at the bottleneck. 
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Fundamental constants1 

Quantity MKS (SI) 

Electron charge (e) 1.60219×10-19 coulomb 

Electron volt (eV) 1.60219×10-19 J･eV-1 

Electron mass (m0) 9.1095×10-31 kg 

Reduced Planck’s constant (h ) 1.05459×10-34 J･s 

Reduced Planck’s constant (h ) 6.5822×10-16 eV･s 

Rydberg (Ry = h 2/2m0a0
2) 13.6058 eV 

Boltzmann’s constant (kB) 1.3807×10-23 J･K-1 

Boltzmann’s constant (kB) 8.617×10-5 eV･K-1 

 

Other constants 

Quantity MKS (SI) 

Lattice constant of bulk silicon2 
(Length between silicon and silicon atom) 

5.430940×10-10 m 
(2.351666×10-10 m) 

Length between silicon and H atom of silane (SiH4)3 1.4798×10-10 m 

Atomic unit of length (a.u.)4 5.291772108(18)×10-11 m 

SiO2 permittivity (eox)5 3.45×10-11 F/m 

Silicon permittivity (esi)6 1.04×10-10 F/m 

 

                                                  
1 E.R. Cohen and B.N. Taylor, Journal of Physical and Chemical Reference Data 2 (4), 663 (1973) 
2 National Astronomical Observatory of Japan: 2003 Chronological Scientific Tables (Maruzen, 
Tokyo, 2003), p.439 [in Japanese] 
3 National Astronomical Observatory of Japan: 2003 Chronological Scientific Tables (Maruzen, 
Tokyo, 2003), p.485 [in Japanese] 
4 H. Shull and G. G. Hall, Atomic Units, Nature, volume 184, no. 4698, page 1559 (Nov. 14, 1959) 
5 Y. Tauer and T. H. Ning: Fundamentals of Modern VLSI Devices (Cambridge, New York, 1998), p. 
xi 
6 Y. Tauer and T. H. Ning: Fundamentals of Modern VLSI Devices (Cambridge, New York, 1998), p. 
xi 


