Electrical Characteristics of HfO₂ and La₂O₃ Gate Dielectrics for In_{0.53}Ga_{0.47}As MOS Structure

K. Funamizu¹, T. Kanda¹, Y.C. Lin³, K. Kakushima², P. Ahmet¹, K. Tsutsui², A. Nishiyama²,

N. Sugii², E.Y. Chang³, K. Natori¹, T. Hattori¹ and H. Iwai¹

FCR, Tokyo Institute of Technology¹, 4259, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan Tel.: +81-45-924-5847, Fax.: +81-45-924-5846

IGSSE, Tokyo Institute of Technology², National Chiao Tung University³

E-mail: funamizu.k.aa@m.titech.ac.jp

Abstract

InGaAs MOS capacitors with HfO_2 and La_2O_3 gate dielectrics have been investigated. La_2O_3 capacitor has revealed larger capacitance value than that of HfO_2 one, owing to its high dielectric constant, at the cost of large leakage current. On the other hand, La_2O_3/HfO_2 stacking enables both the low leakage current as well as large capacitance density.

Introduction

The electron mobility of InGaAs ten times higher that of Si makes InGaAs an attractive candidate for future CMOS devices. However, the lack of highly reliable insulators on InGaAs makes it difficult to form InGaAs MOS device in contrast to Si based CMOS device.(1-4) Therefore, it is really anticipated to find out the device-quality gate insulator for InGaAs MOS device. Recently, HfO_2 and La_2O_3 are commercially used in Si CMOS devices owing to its high dielectric constant and large bandgap. In this study, we investigate electrical characteristics of $In_{0.53}Ga_{0.47}As$ MOS capacitor with HfO_2 and La_2O_3 .

Experimental

InGaAs MOS capasitor were fabricated on a n-type $In_{0.53}Ga_{0.47}As$ substrate. After HF dipping, either HfO₂ or La₂O₃ were deposited by electron-beam deposition in an ultra high vacuum at a pressure of 10^{-8} Pa. Prior to aluminum metal gate deposition, post deposition annealing was conducted in forming gas at 600 °C.

Result

Figure 1 shows the gate leakage current characteristics (J_g-V_g) of the fabricated capacitors; HfO₂ single layer, La₂O₃ single layer and La₂O₃/HfO₂ stacking. La₂O₃ capacitor showed large value among the three MOS capacitor, whereas suppressed J_g can be obtained HfO₂ or stacked film. Figure 2 shows the C-V characteristics of these three MOS capacitors. La₂O₃ and La₂O₃/HfO₂ capacitors performed a large capacitance value than HfO₂ one, owing to its high dielectric constant.

Conclusion

Large leakage current through La_2O_3 was found to be suppressed by stacking La_2O_3 with HfO₂, thereby producing a large capacitance value.

Acknowlegements

This research was supported by Strategic International Cooperative Program, Japan Science and Technology Agency (JST)

References

1. M. W. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, Science 283, 1897 (1999).

- 2. F. Ren et al, Tech. Dig. IEDM. p. (1996)
- 3. J. K. Yang, M. G. Kang, and H. H. Park, J. Appl. Phys. 96, 4811 (2004).
- 4. P. D. Ye et al, IEEE Electron Device Lett. 24, 209 (2003).

Fig.1. $J_g V_g$ characteristics

