Electrical Characteristics of HfO₂ and La₂O₃ Gate Dielectrics for In_{0.53}Ga_{0.47}As MOS Structure

K. Funamizu¹, Y.C. Lin³, K. Kakushima², P. Ahmet¹, K. Tsutsui², N. Sugii², E.Y. Chang³, T. Hattori¹ and H. Iwai¹

FCR, Tokyo Institute of Technology¹, 4259, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan Tel.: +81-45-924-5847, Fax.: +81-45-924-5846 IGSSE, Tokyo Institute of Technology², National Chiao Tung University³ E-mail: funamizu.k.aa@m.titech.ac.jp

ABSTRACT

InGaAs MOS capacitors with HfO_2 and La_2O_3 gate dielectrics have been investigated. La_2O_3 capacitor has revealed larger capacitance value than that of HfO_2 one, owing to its high dielectric constant, at the cost of large leakage current. On the other hand, La_2O_3/HfO_2 stacking enables both the low leakage current as well as large capacitance density.

INTRODUCTION

InGaAs MOSFET is one of the promising candidates for next generation devices, thanks to its high electron mobility compared to that of Si. To achieve a high performing InGaAs MOSFET with low leakage current, high-k materials with proper interfacial quality should be investigated. In this work, MOS capacitors of $In_{0.53}Ga_{0.47}As$ with HfO₂ and La₂O₃ films have been fabricated and the electrical characteristics are measured.

EXPERIMENTAL

InGaAs MOS capasitor were fabricated on a n-type In $_{0.53}$ Ga $_{0.47}$ As substrate, epitaxially grown on a n-type InP substrate. (Si dopant density was 5e10¹⁷ cm⁻³). After chemical cleaning with acetone and ethanol, followed by HF dipping, either HfO₂ or La₂O₃ were deposited by electron-beam deposition in an ultra high vacuum at a pressure of 10⁻⁸ Pa. Prior to aluminum metal gate deposition, post deposition annealing (PDA) was conducted in forming gas (H₂:3%, N₂:97%) at 600 °C. Finally, Al back contacts were formed.

RESULT

Figure 1 shows the gate leakage current characteristics (J_g-V_g) of the fabricated capacitors; HfO₂ single layer, La₂O₃ single layer and La₂O₃/HfO₂ stacking. La₂O₃ capacitor showed large value among the three MOS capacitor, whereas suppressed J_g can be obtained HfO₂ or stacked film. Figure 2 shows the C-V characteristics of these three MOS capacitors. La₂O₃ capacitor performed a large capacitance value than HfO₂ one, however, a large dispersion in capacitance value was observed. La₂O₃/HfO₂ stacked capacitor showed large capacitance as well as small frequency dispersion.

CONCLUSION

InGaAs MOS capacitors with HfO_2 and La_2O_3 gate dielectrics have been investigated. A large leakage current with La_2O_3 can be suppressed by La_2O_3/HfO_2 stacking. A large capacitance value with small frequency dispersion can be obtained with La_2O_3/HfO_2 stacking.

Fig. 2 CV characteristics (a) HfO_2 MOS capacitor, (b) La_2O_3 MOS capacitor (c) La_2O_3/HfO_2 MOS capacitor

ACKNOWLEGEMENTS

This research was supported by Strategic International Cooperative Program, Japan Science and Technology Agency (JST)

REFERENCES

[1] Y. Xuan et al., Appl. Phys. Lett., vol. 88, pp. 263518-520, June 2006.

[2] Y. Sun et al., IEEE Electron Device Lett., vol. 28, pp. 473-475, June 2007.