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Abstract 
 

 

Electronics markets are driving Large Scale Integration (LSI) technology to have 

high performance and high functionality or even low stand-by power. Si-based 

microelectronic devices have accomplished these requirements by miniaturization of the 

active devices called Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). 

This rapid shrinking of the feature size of MOSFET devices has forced the gate 

dielectric thickness and Source-Drain Extension (SDE), which is the main subjects in 

this study, to decrease rapidly to a critical point. In gate dielectric, the search of a new 

material for replacement of ultra-thin silicon dioxide has been addressed due very high 

leakage current caused by direct tunneling. Key guidelines for selecting an alternative 

gate dielectric material are dielectric constant, band gap and band alignment to silicon, 

thermodynamic stability, film morphology, interface quality, process compatibility, and 

reliability. Lanthanum oxide (La2O3) is considered to be promising gate dielectric in the 

next 10 years. It has dielectric constant of 27, band gap of 5.6 eV, band alignment with 

silicon of more than 2 eV, good thermal stability in contact with silicon, and in a form of 

amorphous below temperature 1800oC. However, investigation on formation of La2O3 

thin films over silicon with good interface quality, good compatibility with current 

processing, and good reliability must be carried out. In SDE formations, critical 

requirements on Ultra-Shallow Junctions (USJ) with low sheet resistance are difficult to 

obtain by conventional ion implantation, which is limited to high energy doping, and 

conventional activation annealing, which can cause deeper impurity diffusion. Plasma 

doping method shows the most promising method for USJ in respect with low energy 
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doping. New annealing methods like Flash Lamp Annealing (FLA) and Laser Annealing 

(LA) should be introduced to suppress impurity diffusion. Combination of plasma 

doping and these new instantaneous annealing may leave defects or interstitial impurity 

atoms, which may act as generation-recombination centers. In this study, we investigate 

two major subjects. The first, we evaluate the low-frequency noise of La2O3 gate 

insulated NMISFETs, which is related to the interface quality. And the second, we 

examine the leakage current of ultra-shallow p+/n junctions caused by traps leaving in 

space charge regions (SCR). In the end, based on the above investigations, we discuss 

an expected formation processes to form high device quality. 
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Chapter 1. General Introduction 
 

 

So far, we have been taking the benefits and conveniences of many electronic 

appliances to our life. The needs on automation and portability have forced these 

technological devices to have high-performance, high functionality and even low power 

consumption. In the last three decades, the progresses of electronics advances have been 

accomplished with the growth of Si-based microelectronic devices in Very-Large-Scale 

Integration (VLSI) technology. The rapid growth in VLSI technology has been enabled 

with miniaturization of the active devices, called Metal-Oxide-Semiconductor Field 

Effect Transistors (MOSFETs), to even smaller sizes. This miniaturization was 

technically termed by “scaling rule.” An obvious benefits from device miniaturization – 

higher packing densities, higher circuit speeds, more functions, and lower power 

consumptions – have been a prime key in the evolution of today’s computer and 

communication system that offer superior performance, reduced cost, and reduced 

physical size, in comparison with their predecessors. 

 

1.1 Perspective on CMOS Technology 

 

The scaling rule is based on reducing the device dimension in both lateral (i.e. 

lithographic feature size) and vertical (e.g. gate dielectrics, junction depth, etc.). The 

consensus scenario of how the device parameters are scaled for the next technology is 

provided in the International Technology Roadmap for Semiconductor [1]. A simple 
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description of miniaturization with scaling factor of S is shown in Fig. 1.1 and Table 1.1. 

To gain S times of the device performance, the physical device dimensions are reduced 

by S times, while the electrical parameters are increased by S times.  

 

 

 

 

 

 

 

 

Fig. 1.1 An overview on scaling of MOSFET device structure. 

Table 1-1 Miniaturization with scaling factor of S. 
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gate oxide thickness t ox t ox /S
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junction depth X j X j /S

power supply voltage V dd V dd /S
threshold voltage V th V th /S

substrate doping concentration N SUB N SUB ×S
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1.1.1 Requirements in Gate Dielectrics 

 

The silicon gate oxide with physical thickness of about 1.5 nm has been used for 

the most recent advanced LSI products. To improve the channel drive current and 

transconductance, physical thickness of silicon gate oxide must be scaled down to less 

than 1.5 nm. Nitrided-SiO2 materials are extensively used for near-1-nm gate oxides 

technology.  

Currently, a technical term equivalent oxide thickness (EOT) is used for non-SiO2 

gate dielectrics. EOT is defined as the physical thickness of SiO2 to have an electrical 

inversion charge value equivalent with the respective gate dielectric if SiO2 gate oxide 

is used. Fig. 1.2 shows the projection of the gate oxide technology defined in 

International Roadmap for Semiconductors (ITRS) 2004. The lower level corresponds 

to High Performance (HP) Main Processing Unit (MPU), the middle is for Low 

Operating Power (LOP), and the upper is for Low Standby Power (LSTP). 

Requirements showed in Fig. 1.2 indicate an EOT progressing to less than 1 nm.  

The gate dielectric has emerged to be one of the most difficult challenges for the 

future device scaling due to high direct tunneling currents. Fig. 1.3 shows the leakage 

current density of the-state-of-the-art silicon gate oxide as a function of effective 

physical thickness. In HP MPU applications that have high allowable leakage currents, 

nitrided-SiO2 might be scaled as thin as 1 nm. However, leakage current, thickness 

control and reliability may limit the use of nitrided-SiO2 bellow 1 nm. Significantly, 

high-κ gate materials are needed for sub-1-nm gate oxide technology and for LOP and 

LSTP applications that have strictly low allowable leakage currents.  
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Fig. 1.2 Trend in gate dielectrics: Low EOT values are needed to improve the drive 
current (and transconductance) of MOSFET. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3 The leakage current density of the-state-of-the-art silicon gate oxide as a 
function of effective physical thickness. For sub-1-nm gate oxide technology, high-κκκκ 
gate materials are needed due to high leakage currents. 
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1.1.2 High-κκκκ Gate Materials 
 

There are many materials that are considered to be potential as replacements for 

SiO2 as the gate oxide technology are scaled beyond 1 nm. The key guidelines for 

selecting an alternative gate dielectric material are dielectric constant, band gap and 

band alignment to silicon, thermodynamic stability, film morphology, interface quality, 

process compatibility, and reliability.  

In silicon semiconductor processes, thermal processing as high as 1000 K is very 

common to reduce defect formations. Thermal stability in contact with silicon up to 

1000 K is required for high-κ gate dielectric materials. The possible candidate of several 

metal oxides system for the use of gate dielectric materials is shown in white spaces of 

Fig 1.4.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4 Candidate of metal oxides that are thermodynamically considered to have 
good stability in contact with silicon up to 1000 K. 
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Thermal stability in contact with silicon is shown by the standard Gibbs free 

energy of the system (∆Go) of the possible reactions between the metal oxides and 

silicon that is usually metal, silicide, or silicate formations. Lowering of Gibbs free 

energy of the system (∆Go < 0) means the formation reactions are in straight forward. 

The following is the available data of ∆Go at 1000K on metal and silicide formation for 

lanthanum oxide (La2O3) material. 

 

 

 

As ∆Go of metal and silicide formation for La2O3 material is remained positive, it is 

considered that La2O3 does not react with silicon to form metal or silicide in silicon 

interface. 

To perform a low EOT, high-κ gate dielectrics materials must have high enough 

dielectric constant. However, material with very high dielectric constant tends to have 

narrower band gap that allows higher Schottky conduction currents and tunneling 

currents. Fig. 1.5 shows band gap energy of several metal oxide and silicate materials as 

a function of dielectric constants. La2O3 gives high dielectric constant of 25 and wide 

band gap of 5.6 eV that is suitable for the use of gate dielectrics 

To inhibit a low leakage current due to Schottky emission conduction mechanism, 

the high-κ gate dielectric materials must have wide band gap and high barrier of more 

than 1 eV for both electrons and holes. Fig. 1.6 Predicted band offset of several binary 

and ternary metal oxides in alignment with silicon band energy. La2O3 has a good 

symmetrical band barrier of more than 2 eV for both electrons and holes that is 

compatible for CMOS devices. 

∆Go
1000K = +98.470 kcal/molSi + LaOx � La + SiO2

Si + LaOx � LaSiz + SiO2 ∆Go
1000K = +66.372 kcal/mol

∆Go
1000K = +98.470 kcal/molSi + LaOx � La + SiO2

Si + LaOx � LaSiz + SiO2 ∆Go
1000K = +66.372 kcal/mol
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Fig. 1.5 Band gap energy of several metal oxide and silicate materials as a function 
of dielectric constant. Material with very high dielectric constant has narrower 
band gap that is not suitable for the use of gate dielectrics. 

 

 

 

 

 

 

 

 

 

Fig. 1.6 Predicted band offset of several binary and ternary metal oxides in 
alignment with silicon band energy. 
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Fig. 1.7 Reported leakage current density of various high-κκκκ gate materials as a 
function of EOT. La2O3 shows superiority over other materials due to very low 
leakage current. 

Previously, excellent results on several high-κ gate dielectrics materials have been 

reported. Fig. 1.7 shows reported leakage current density of various high-κ gate 

materials as a function of EOT. From Fig. 1.7, the superiority of La2O3 is obvious, low 

EOT with low leakage current can be achieved with La2O3. 

Finally, La2O3 is considered to be the most promising gate dielectric material for 

the next generation gate dielectric technology. La2O3 material shows good physical 

properties, e.g. high dielectric constant of 27, wide band gap of 5.6 eV, symmetrical 

band offset for electrons and holes of more than 2 eV, and good thermal stability in 

contact with silicon. In this thesis, the electrical properties of MISFET with La2O3 gate 

dielectrics will be evaluated. 
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1.1.3 Requirements for High Frequency and Analog/Mixed-Signal 

Applications 

 

Recently, the needs of communication and information technology are increased 

with the development of a highly-information-oriented society. Various communication 

systems are coming out in various areas, services, and bandwidths so called ubiquitous 

electronics. These have been realized by the progress of wireless communication 

systems. A wide range of frequency bandwidths from 0.8-10 GHz are attracting our 

attention for the use of Global Standard for Mobile (GSM), Wide Code Division 

Multiple Access (WCDMA), Global Positioning System (GPS), 802.11 protocol for 

Local Area Network (LAN), etc. Fig. 1.8 shows application spectra of several 

semiconductor materials for High Frequency (HF) and Analog/Mixed-Signal (AMS) 

Technologies. Gigahertz applications of silicon devices will be the driving forced of 

wireless communication systems due to cost, power consumption, functionality, and 

available frequency bands. 

 

 

 

 

 

 

 

Fig. 1.8 Application spectra of several semiconductor materials for High 
Frequency and Analog/Mixed-Signal Technologies. 
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The bases of wireless communication devices are realized by semiconductor 

integrated circuits. Mostly, current wireless communication devices are contents of 

Radio Frequency/Intermediate Frequency (RF/IF) and Base Band (BB) sections as 

shown in Fig 1.9. The functional of receiver circuits in RF/IF block are to extract the 

signal components of the high frequency by demodulating them to digital signals. While 

the transmitter are to modulate the digital signals with frequency components and 

amplifying them in order to be ready to transmit to the outside medium. Devices used in 

HF and AMS require having sufficiently low Noise Figure (NF). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.9 Typical schematic block for wireless communication devices. 
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Low Frequency Noise (LFN) which is dominated by 1/f noise is becoming a major 

concern in analog applications, because excessive of this kind of noise can lead to a 

serious limitation of their performances and functionalities. In high frequency circuit 

applications, 1/f noise spectrum is up-converted to give rise to phase noise in oscillators, 

mixers or modulators. Fig. 1.10 shows the requirements of NMOS analog speed devices 

as defined in ITRS 2004 update version. To preserve a high signal-to-noise ratio, device 

with 1/f noise as low as WLSvg/EOT2 < 10-4 V2/Hz is required. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.10 Requirements of NMOS analog speed devices as defined in ITRS 2004 
update version. 
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1.1.4 Requirements in Source/Drain Extension (SDE) 

 

Miniaturization of MOSFET reduces the Source/Drain Extension (SDE) junction 

depths to minimize the device short-channel effects. While having an ultra-shallow 

junction, SDE must have a low sheet resistance to preserve low parasitic resistance that 

enables high drive currents. Fig. 1.11 shows the requirements of junction depth Xj and 

sheet resistance Rs for PMOS SDE. Junction depths of less than 20 nm with sheet 

resistance of about 1000 Ω/sq. will be needed for PMOS devices. In the next 5 years, 

severe requirements of sub-10-nm junctions with sheet resistance as low as 800 Ω/sq. 

will be required. Formation of this Ultra-Shallow Junction (USJ) for SDE with 

conventional low energy ion implantation will be high cost and difficult on controlling 

low energy. Therefore, a new doping method for USJ formation technology like Plasma 

Doping (PD) method will be highly demanded. 

Typically, USJ are formed by high dose ultra-shallow doping method followed by 

nearly diffusion less annealing method. Fig. 1.12 shows potential solutions for USJ 

formation. Plasma doping combined with millisecond annealing like Flash Lamp 

Annealing (FLA) or non-melt Laser Annealing (LA) appears to be the most likely 

alternatives for sub-10-nm USJ formations. Plasma doping method is expected to have 

the following merits: (1) Easiness on controlling low energy doping, (2) High 

throughput, fast formation and compatibility for large wafer size, and (3) low cost. 
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Fig. 1.11 Requirements of junction depth Xj and sheet resistance Rs for 
source/drain extension of PMOS devices. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.12 Potential solutions for source/drain extension formations. 
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1.2 Motivations of This Study 

 

In this thesis, a detail study of two major parts related to the electrical quality of 

vertically scaled to an extreme region of two MOSFET parameters will be evaluated. 

The first part is related to the channel quality of NMISFET with high-κ gate dielectrics. 

Low-frequency noise that is very important parameter in mixed or analog design will be 

carried out. The second part is related to the junction quality of ultra-shallow junction 

formed by plasma doping method. 

 

1.2.1 Low-Frequency (1/f) Noise of NMISFET with La2O3 High-κκκκ 

Gate Dielectrics 

 

There have several reports on the superiority of electrical properties of La2O3. Low 

current densities at EOT of less than 1 nm, high drive current and high mobility of 

NMISFET can be achieved with La2O3 gate dielectrics. Good quality La2O3 thin films 

can be achieved by deposition over pre-treated chemical oxide substrate instead of 

HF-last substrate due to La-riched film formations. In this study, evaluations of the 

low-frequency noise of La2O3 gate insulated NMISFETs will be addressed. A unified 

model approach based on combined number fluctuation, correlated number - mobility 

fluctuation and mobility fluctuation models will be used. The possibility of the use 

La2O3 as gate dielectrics for analog applications will be evaluated. Lastly, 

considerations to obtain a better quality of La2O3 thin films will be discussed. 
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1.2.2 Analysis of Electrical Properties of Ultra-Shallow p+/n Junctions 

Formed by Plasma Doping Method 

 

Plasma doping method is an attractive method on ultra-shallow junction formations 

due to low energy doping. This new doping method that may result an amorphous 

doping layer must be recovered by annealing method. In sequence to impurity doping, 

new annealing methods like Flash Lamp Annealing (FLA) and Laser Annealing (LA) 

should be introduced to suppress deeper impurity diffusion. However, combination of 

plasma doping and these new instantaneous annealing may leave defects or interstitial 

impurity atoms that may act as generation-recombination centers. In this study, we 

examine the leakage current of ultra-shallow p+/n junctions caused by traps leaving in 

space charge regions. At last, based on the above investigations, we will discuss an 

expected formation processes to form high device quality. 

 

1.3 Outline of the Thesis 

 

This thesis is composed of six chapters. In this chapter, we describe the 

background of this study, the perspective on CMOS technology, future requirements of 

gate dielectrics technology and source/drain extension formation, and our motivations 

on working on this study. 

In chapter 2, we illustrate theoretical reviews to understand behaviors and 

mechanisms of the experimental results. MIS capacitor and p/n junction are the simplest 

device structure forming MISFET, having good satisfaction on evaluation the device 

quality. A universal theory on low-frequency noise of MISFET device is still a difficult 
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discussion until now. An approach on unified physical and empirical theory will be 

reviewed in this chapter. 

Details of device fabrication procedures, appliances and instruments, and 

measurement techniques will be showed in chapter 3. Basic operations and principles of 

appliances, instruments, and measurement systems are necessary to interpret a raw 

process and the measured data. 

In chapter 4, we will discuss the experimental results on low-frequency noise of 

La2O3 gate insulated NMISFET. We will use a comparison approach with standard 

thermal growth SiO2 for benchmarking the channel quality. 

Electrical characteristics of ultra-shallow p+/n junctions formed by flash lamp and 

spike rapid thermal activation annealing in sequence to plasma doping method will be 

discussed in chapter 5. A standard p+/n junctions formed by ion implantation followed 

by spike rapid thermal annealing will be used as a reference. Trap levels, numbers, life 

times will be showed in parallel to the absolute value of reverse-biased current density. 

In the last chapter, we will summarize our works and the conclusions will be stated 

with further issues and expectation for the future works. 
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Chapter 2. Theoretical Review 
 

 

Several experiment results provide us an intuitive understanding while most of 

them are difficult to understand. Basic theoretical and concepts are sometimes needed 

for comprehensive understanding of the origins, mechanism, and behaviors of the 

results. In this chapter, we discuss the principle MIS capacitor, basic origins of 

low-frequency noise and electrical characteristics of p/n junctions. 

 

2.1 Metal-Insulator-Semiconductor (MIS) Capacitor 

 

In order to analyze the experimental C-V characteristics, the comparison between 

ideal and experimental C-V is necessary. C-V curve is divided into three regime, 

inversion, depletion and accumulation.  Capacitance of Si depends on the surface 

potential while the insulator capacitance is constant.  So, in order to reach the ideal 

curves, the capacitance of Si should be calculated, which is expressed by following 

equation: 

1) US≥0 

 

Eq. 2.1 

2) 0≥US≥2UF 

 

Eq. 2.2 

[ ] 2
1

)1()1(

)sinh()sinh(ˆ

−−+−+

−++
=

−−
S

UU
S

UU

FFS
SDS

UeeUee

UUU
UCC

SFSF

{ } { }
{ } 2

1

2

12

1sgn
−−

−⋅=
−

S
U

U
U

DSS

Ue

eeCUC
S

S
F



 18

3) 2UF≥US 

 

Eq. 2.3 

 

Eq. 2.4 

where U(x) and Us in above equation is defined as the following. 

Eq. 2.5 

Eq. 2.6 

Hence, the capacitance of MIS diode can be calculated with the following equation. 

Eq. 2.7 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Calculated ideal C-V curves of Al/insulator/n-Si with doping 
concentrations increased in every decade. 
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2.2 Low-Frequency Noise 

 

A various models have been used to explain the 1/f noise in MOSFET devices. It 

has been generally accepted that the 1/f noise in the conduction channel of the device is 

associated with capture and emission of charge carriers from the traps in the oxide, very 

near to the Si/SiO2 interface. In this subsection, we discuss some general properties of 

low-frequency noise. 

 

2.2.1 Basic Mathematic in Noise Analysis 

 

For a continuous value random variable X, the Probability Density Function (PDF) 

can be specified by the following expression. 

Eq. 2.8 

From the Probability Density Function, we can calculate all the moments of the random 

variable. The most important expressions for noise analysis are the mean and the mean 

square as respectively shown as below. 

Eq. 2.9 

Eq. 2.10 

The mean square is often interpreted as the average power of a signal X. The square root 

of this power (denoted as RMS) represents as equivalent constant signal with power 

equal to the average power of X. From the mean and the mean square, we can calculate 

the variance of X as the following. 

Eq. 2.11 
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This is interpreted as the square distance of X from its mean. When X has zero mean, its 

variance is equal to the mean square. The variance is often used to estimate the noise 

power. 

For modeling a noise waveform, we may take a random process X(t), where -∞ ≤  

t ≤ +∞. It is an infinite collection of random variables (noise samples) indexed by times 

t. For times t1, t2, t3, …, tn, the samples X(t1), X(t2), X(t3), …, X(tn) are random variables. 

In noise analysis, it is important to know the process mean and the autocorrelation 

function. The autocorrelation is expressed as below. 

Eq. 2.12 

Many important noise processes are modeled as stationary random processes, i.e., 

processes with time invariant statistics. If both mean and autocorrelation function are 

time invariants, which is satisfying  

Eq. 2.13 

Eq. 2.14 

then X(t) is a Wide-Sense Stationary (WSS) process and its autocorrelation function has 

the following properties 

a. The average process power is  

b. Rx(τ) is an even function, which is Rx(τ)=Rx(-τ). 

In the time range 0 ≤ t ≤ T, the Fourier Transform of X(t) is  

Eq. 2.15 

where, 

Eq. 2.16 
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The spectral power density of X(t) is defined as the following. 

Eq. 2.17 

According to the Wiener-Khintchine theorem, the autocorrelation function and power 

spectral density function of a random variable X(t) has the following relationship. 

Eq. 2.18 

Eq. 2.19 

From the autocorrelation properties of a stationary process, when τ = 0 in Eq. 2.19, we 

can obtain 

Eq. 2.20 

This shows the physical meaning of the power spectral density that is mean square of 

random variable in the unit frequency bandwidth. 

In noise analysis, it is necessary to estimate the mean and the autocorrelation 

function of a stationary noise process. There are two approaches to estimate them: the 

ensemble average and the time average. In the ensemble average, a large number of 

identical systems are constructed and measured simultaneously to extract the statistics 

in which we are interested. As a large number of identical systems are not available in 

practical experiments, this approach is not well suited for noise measurements. Instead 

of this, the time average is often used to analyze experimental noise data, as long as the 

noise process is stationary. 

 

2.2.2 Generation and Recombination Noise 

 

In semiconductor materials and devices, generation-recombination (GR) noise is 
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caused by fluctuation in the number of free carriers inside of two terminals 

semiconductor device sample, associated with random transitions of charge carriers 

between states in different energy bands. Typical examples of transitions are between 

conduction band and localized levels in the energy band gap, conduction and valence 

band, etc. Therefore, generation-recombination noise is inherently due to fluctuations of 

carrier number by keeping the total charge to neutrality.  

As a simple model, we assume that there are N carriers in the device, with a 

generation rate g(N) and recombination rate r(N). The fluctuation in the number of 

carriers is described by a differential equation of the following form. 

Eq. 2.21 

In here, N = N0 + ∆N, where N0 is the equilibrium number of carriers. We may expand 

g(N) and r(N) in Taylor series and neglect the higher order terms: 

 

Eq. 2.22 

 

Eq. 2.23 

By substituting these two equations into Eq. 2.21, we obtain 

 

 

Eq. 2.24 

Here we define H(t)=∆g(t) – ∆r(t) as a random noise term, and τ as the lifetime of the 

carriers that gives 
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Eq. 2.25 

By giving g(N0) = r(N0), we may simplify Eq. 2.24 into the following form. 

 

Eq. 2.26 

For 0 ≤ t ≤ T, we can expand H(t) and ∆N(t) in a Fourier series 

Eq. 2.27 

 

Eq. 2.28 

By substituting Eq. 2.27 and Eq. 2.28 into Eq. 2.26, we may find 

Eq. 2.29 

The power spectral density of H(t) and ∆N(t) is defined as the following. 

Eq. 2.30 

Eq. 2.31 

Since H(t) is a white noise source, then SH(f) = SH(0). From Eq. 2.30 and Eq. 2.31, then 

we may find 

Eq. 2.32 

 

Eq. 2.33 

Widely used expression for generation-recombination noise can be obtained with 

substituting Eq. 2.33 into Eq. 2.32. As we may find 
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Eq. 2.34 

The spectrum of the fluctuations in Eq. 2.34 is in the form of a Lorentzian type with two 

parameters, i.e., the variance of number fluctuations and the characteristic time of 

charge carriers. A typical noise curve of the current in small device as a result of carrier 

interactions with a single trap center is illustrated in Fig 2.2. The noise spectrum is of 

the shape of Debye-Lorentzian type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 Typical noise curve of the current in small device as a result of carrier 
interactions with single trap center. The noise spectrum is of the shape of 
Debye-Lorentzian type. 
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2.2.3 Low-Frequency Noise Originated from G-R Mechanism 

 

A superposition of a large number of Lorentzian spectra might result is a 1/f spectrum. 

To investigate this problem, we rewrite Eq. 2.34 instead of in the following form. 

Eq. 2.35 

where the probability g(τ)dτ is normalized by requiring 

Eq. 2.36 

In a particular case, we find 

Eq. 2.37 

for τ0 ≤ τ ≤ τ1 and g(τ)dτ = 0 otherwise, so that g(τ) is normalized, we may obtain the 

following expression. 

 

Eq. 2.38 

This is correspond to 

 

Eq. 2.39 

 

Eq. 2.40 

 

Eq. 2.41 

Thus, we see that the spectrum is white at low frequencies, goes 1/f 2 at very high 

frequencies, and varies as 1/f over a wide intermediate frequency range. A graphic 
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representation of the discussion above is shown in Fig 2.3. From the figure, ten 

Lorentzian spectra have been added, each with time constant 10 times higher than the 

previous one. The resultant summation of the spectra gives a 1/f type spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Graphical representation of 1/f noise as a result of summation of ten 
Lorentzian spectra.  
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charges, and indirectly through fluctuations in scattering associated with changes in trap 

occupancy. Data from narrow-channel MOSFETs confirm that both effects can be 

important. In general, noise studies on n-channel MOSFETs tend to follow a number 

fluctuation model, at least to first order. In p-channel devices, noise is often attributed to 

both number and mobility fluctuations. 

 

2.2.4 Low-Frequency Noise Originated from Mobility Fluctuation 

 

F. N. Hooge proposed mobility fluctuation model for the first time. It was modeled 

base on a number of experiments in metal thin film. He found that the noise in film 

conductors could be characterized by 

Eq. 2.42 

where αH is a dimensionless Hooge’s empirical parameter and NC is the number of 

charge carrier in the conductor. Later, Hooge found that dimensionless αH parameter is 

due to electron phonon scattering that is related to the crystalline quality of film 

conductors. Hooge’s theory gives a pure 1/f spectrum in all frequency range. 

In this work, we measure the noise spectral power density of the drain currents. 

The La2O3 gate insulated NMISFET devices are operated from weak to strong inversion 

in both linear and saturation regions. As previously reported, high-κ gate insulated 

NMISFETs are usually suffering from the degradation of channel mobility. From this 

reason, a combined number fluctuation, correlated number - mobility fluctuation and 

mobility fluctuation models approach will be used for analyzing the noise power density 

instead of pure number fluctuation. 
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2.3 Electrical Characteristics of p/n Junction 

 

All semiconductors contain impurities. Some impurities are intentionally 

introduced as dopant atoms (shallow-level impurities), recombination centers 

(deep-level impurities) to reduce the device lifetime, or deep-level impurities to increase 

substrate resistivity. Many impurities are intentionally incorporated during crystal 

growth or device processing. The impurities may be foreign impurities (e.g., metal), 

crystallographic point defects (e.g., vacancies and interstitials, or structural defects (e.g., 

stacking faults and dislocations). In this subsection, we will review the statistical 

generation and recombination in semiconductor and its effect to pn junction leakage 

mechanism. 

 

2.3.1 Generation and Recombination in Semiconductor 

 

The band diagram of a perfect single crystal semiconductor consists of a valence 

band and a conduction band separated by the band gap. When foreign atoms or crystal 

defects perturb the periodicity of the single crystal, discrete energy levels are introduced 

into the band gap, shown by the ET lines in Fig. 2.4. Each line represents one such 

defect with energy ET. Such defects are commonly called generation-recombination 

(G-R) centers or traps. G-R centers lie deep in the band gap and are well known as deep 

energy level impurities, or simply deep-level impurities. They act as recombination 

centers when there are excess carriers in the semiconductor and as generation centers 

when the carrier density is below its equilibrium value as in the reverse-bias space 

charge region of pn junctions or MOS-capacitors. 
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Fig. 2.4 Energy band diagram for semiconductor with deep-level impurities. The 
capture and emission processes for electron is shown in (a) and (b), while (c) and 
(d) is for hole.  

 

Considering the deep level impurity shown in Fig. 2.4, it has an energy ET and 

consists of NT impurities/cm3 uniformly distributed through out the semiconductor. To 

follow the various capture and emission processes, the G-R center first capture an 

electron from the conduction band (a), and characterized by the capture coefficient cn. 

After electron capture, one of two events takes place. The center can either emit the 

electron back to the conduction band from where it came, called electron emission en (b), 

or it can capture a hole from the valence band as cp (c). After either of these events, the 

G-R center is occupied by a hole and again has two choices, either it emits the hole back 

to the valence band ep (d) or captures an electron cn (a). A recombination event is (a) 

followed by (c) and generation is (b) followed by (d), while the trapping event is (a) 

followed by (b) or (c) followed by (d). Whether the impurity acts as a trap or a G-R 

center depends on the location of the Fermi level in the band gap, the temperature, and 

the cross sections of the impurity. Generally those impurities whose energies lie near the 

middle of the band gap behave as G-R centers, whereas those near the band edges act as 

traps. 
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A G-R center can be one of two charge states, i.e., nT state when occupied by 

electron and pT state when occupied by a hole. The concentration of G-R centers 

occupied by electrons nT and holes pT must equal the total concentration NT, or NT = nT 

+ pT. When electron and holes recombine or are generated, the electron concentration in 

the conduction band n, the hole concentration in the valence band p, and the charge state 

of the center nT or pT are all function of time. The time rate of change for electron n due 

to G-R mechanisms is given by, 

Eq. 2.43 

While for hole p, we may find the similar expression, 

Eq. 2.44 

The capture coefficient cn is defined by, 

Eq. 2.45 

where νth is the thermal velocity of the electrons and σn is the electron capture cross 

section of the G-R center. Whenever an electron or hole is captured or emitted, the 

center occupancy changes, and that rate of change is given by, 

Eq. 2.46 

This equation is in general nonlinear, with n and p being time-dependent variables. It 

can be solved easily if the equation can be linearized. Two cases allow this 

simplification: (1) In a reverse-biased space-charge region both n and p are small and 

can, to first order, be neglected. (2) In the quasi-neutral regions n and p are reasonably 

constant. Solving Eq. 2.46 for condition (2) gives nT(t) as 

Eq. 2.47 
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where nT(0) is the concentration of G-R centers occupied by electrons at t = 0 and t = 

1/(en + cnn + ep + epp). The steady state concentration as t→∞ is 

Eq. 2.48 

This equation shows the steady-state occupancy of nT to be determined by the electron 

and hole concentrations as well as by the emission and capture rates.  

 

2.3.2 Rectifying Characteristics of p/n Junction 

 

The basic rectifying characteristics of p/n junction can be described with the ideal 

current-voltage equation. Total current in p/n junction for forward-bias and reverse-bias 

condition can be given as 

Eq. 2.49 

where np0 and pn0 are respectively electron and hole densities on p- and n- side. 

Eq. 2.50 

Eq. 2.51 

where τn and τp are recombination lifetime for electrons and holes, respectively. The 

saturation current is defined as  

Eq. 2.52 

So, Eq. 2.49 can be simplified into the following. 

Eq. 2.53 

The above equation is ideal current-voltage equation and well known as Shockley 

equation, as he derives the equation for the first time. 
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Fig. 2.5 Principal diffusion current mechanism of in p/n junction. The total current 
are determined by recombination of excess minority carriers in neutral region. 
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Fig. 2.6 C-V characteristics of a practical Si p/n junction. (a) G-R current region. 
(b) Diffusion current region. (c) High-injection current region. (d) Series resistant 
effect. (e) Reverse leakage current due to G-R processes and surface effects. 
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Chapter 3. Device Fabrication and 

Characterization Methods 
 

 

Semiconductor devices are case sensitive to the process fabrications that 

cleanliness, material formations, chemical purities are much important in the effect to 

their electrical characteristics. The cleanliness of a clean room is determined with the 

number of particles in a cubic feet or its class. Most of LSIs (Large Scale Integrations) 

are produced in an automated ultra-clean room that only an extremely very small 

amount of particles are tolerated. In the next place, material formations that produce 

more defect in crystals or cavities in amorphous might decrease the device quality due 

to uncontrollable characteristics. As an example, thermally grown SiO2 has a better 

quality for gate oxide than that of deposited as deposited SiO2 produce more interface 

state and trap densities. Subsequently, impurities of the chemical solutions may produce 

chemical contamination that decrease the device characteristics like excess of light 

cation species such as sodium or potassium lowered the gate oxide quality since they act 

as mobile charge in insulators. Wafer cleaning like a standardized RCA cleaning method 

are frequently used to remove these of particle contaminations. 

In this chapter, we describe the details of procedures, instrumentations, appliances, 

and tools for fabrications and characterizations of La2O3 NMISFET and ultra-shallow 

p+/n junction devices. Depending on its necessity, basic physics or operations are 

sometimes illustrated. 
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3.1 Fabrication Method for La2O3 NMISFET 

 

Miss in fabrication processes may directly influence the device characteristics and 

even its performances. On the contrary, failing in the expected device characteristics 

sometimes can be traced from how the device was fabricated. In this sub section, we 

explain the detail of our experimental procedure for fabricating La2O3 NMISFETs.  

 

3.1.1 Device Fabrication Procedure 

 

The device fabrication flow chart and the top view micrograph for La2O3 

NMISFET are illustrated in Fig 3.1, while the cross-sectional description in La2O3 

NMISFET device fabrication is shown in Fig 3.2. NMISFET device fabrication was 

started from S/D implanted Si(100) substrate. The wafer was cut in 2 cm×2 cm. After 

removing the initial oxide of 300 nm with buffered-HF for about 2 min, the substrate 

was rinsed with standard RCA cleaning process. Chemical oxide surface treatment by 

dipping in H2O2 for 30 min was applied to obtain Si-O passivation layer. La2O3 thin 

film was deposited by e-beam evaporation at substrate temperature 250oC. Because 

as-deposited samples are usually of low electrical quality with many defects or oxygen 

vacancies, the sample was annealed in O2 ambient at 400oC for 5 min. After Al metal 

gate deposition with bell jar vacuum evaporation, the gate area was defined with 

photolithography followed by Al metal etching with H3PO4 solution at 55oC. The PAD 

area was formed with lift-off process under acetone solution. Lastly, after removing the 

native oxide, the Al back electrode was deposited with vacuum thermal evaporator. 
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Fig. 3.1 The top view micrograph of La2O3 NMISFET with W×L = 54 µµµµm × 10 µµµµm 
and the device fabrication flow chart. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 Cross-sectional description in La2O3 NMISFET device fabrication. 
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3.1.2 Substrate Cleaning and Surface Pre-treatment 

 

Before depositing the La2O3 thin films with e-beam evaporation, Si substrate 

cleaning is applied to avoid particle contaminations like metallic or organic species and 

to remove native oxide. A standard RCA wet cleaning procedure is used for removal of 

that contamination species and the native oxides. Metallic and organic contaminants are 

removed with Sulfuric-Peroxide Mixture (SPM), a mixture of sulfuric acid (H2SO4) and 

hydrogen peroxide (H2O2) with composition of H2SO4: H2O2 = 4:1. Subsequently, the 

native oxide is removed by dipping in 1% fluoric acid (HF) for 5 minutes. In the later, 

as-cleaned substrate with HF is called HF-last. 

In semiconductor processes, de-ionized, highly purified and filtered ultra-pure 

water is utilized for cleaning process, since this can remove many traces like particulate 

or bacterial contaminations. Water resistivity is often used for monitoring their purity. 

Theoretically, pure water at 25oC has resistivity of 18.3 MΩ-cm. In this experiment, 

ultra-pure water with resistivity of more than 18.2 MΩ-cm, fewer than 1.2 bacterial 

colonies per milliliter, and no particle larger than 0.25 µm are used. 

Surface pre-treatment with hydrogen peroxide for 30 minutes was applied to 

coverage the silicon surface with chemical oxide. This chemical oxide coverage 

substrate is called CO. There are significant differences between HF-last and CO for 

high-κ gate dielectrics. The superiority of La2O3 over CO to HF-last has been 

previously reported as the CO may enhance the dielectrics and surface quality. La2O3 

with CO promises film quality with La2O3-riched that gives lower EOT and lower 

leakage currents. This procedure of wafer cleaning process is shown in Fig. 3.3. As to 

avoid particle contamination or oxidation from air exposure, the wafer is immediately 
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loaded into the e-beam evaporation-loading chamber. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 Flowchart for the wafer cleaning process. The wafer is immediately loaded 
into the e-beam evaporation-loading chamber to avoid particle contamination and 
oxidation from air exposure. 
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mismatch surface yield lattice with dislocations that function as paths for carrier to get 

through. For gate dielectric applications, amorphous or perfect crystallinity of thin films 

is recommended. In this experiment, we deposited La2O3 by ultra high-vacuum e-beam 

evaporation system. 

The schematic drawing of e-beam evaporation system for dielectric deposition is 

depicted in Fig. 3.4. It can be seen that the system is utilized with 4 e-guns and 4 

dielectric sources. The evaporated source is bombarded with electron beam with 

acceleration voltage of -5 kV. The substrate is heated of ~250oC to evaporate any 

suspected moisture. Background pressure of the growing chamber is of ~10-10 Torr, and 

the pressure during deposition is kept at ~10-9 to ~10-7 Torr. Such ultra-high vacuum 

pressure can be obtained with utilizing an ion pump, titanium sublimation pump and 

even cooling the chamber with liquid nitrogen. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4 Schematic drawing of e-beam evaporation system for dielectric deposition. 
The system is utilized with 4 e-guns and 4 dielectric sources. The background 
pressure is of ~10-10 Torr, and the deposition pressure is kept ~10-9 to ~10-7 Torr. 
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3.1.4 Rapid Thermal Annealing 

 

Thermal processes are often used for defects recovery or molecular introduction to 

dielectric thin films, for lattice recovery or impurity electrical activation of doped or ion 

implanted wafers. In this experiment, Rapid Thermal Processing MILA-3000 from 

ULVAC is used for annealing deposited La2O3 thin films. Fig. 3.5 illustrated the 

schematic drawing for MILA-3000. High purity gas ambience can be obtained by 

pumping out and purging with the in use ambient gas. This RTP system is heated-up by 

infrared lamp heating furnace and cooled-down by flowing water radiator. The furnace 

temperature is of the range from room temperature to around 1200oC with ramp-up of 

less than 50oC/sec and much slower on cooling-down. The available of ambient gases 

are N2 and O2 at atmospheric pressure by keeping the flowing gas at the rate of 1 

lt./min.  

 

 

 

 

 

 

 

 

Fig. 3.5 Schematic drawing for Rapid Thermal Annealing (RTA) MILA-3000. High 
purity gas ambience can be obtained by pumping out and ambient gas purging. 
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3.1.5 Vacuum Thermal Evaporation Method 

 

All of Al metals in this work were obtained from deposition with bell jar vacuum 

thermal evaporation. Fig. 3.6 illustrates a schematic drawing for vacuum thermal 

evaporation system. The system is utilized with Turbo Molecular Pump (TMP) to pump 

down to several 10-5 Torr. In case of MIS capacitor fabrication, metal shadow mask with 

circle opening of 100 µm and 200 µm diameters was used. Filament is made of tungsten, 

was used for heating the Al source up to its vapor temperature. Both filaments and Al 

sources are made of Nilaco, inc. with material purity of 99.999%.  

 

 

 

 

 

 

 

 

 

Fig. 3.6 Schematic drawing for vacuum thermal evaporation system. The system is 
utilized with Turbo Molecular Pump (TMP) to pump down to several 10-5 Torr. 
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pressure of liquid Al is given by the following.  

Eq. 3.1 

Neglecting the last two terms, the Arrhenius character of log P vs. 1/T can be essentially 

preserved. Fig. 3.7 presents thermal equilibrium for metal evaporations in form of 

Arrhenius plots. The dot marks are the metal melting points. Two modes of evaporation 

can be distinguished in practice, depending whether the vapor effectively emanates from 

liquid or solid source. Usually, a melt will be required if the element in question does 

not achieve a vapor pressure greater than 10-3 torr at its melting point. Most metals, like 

Al, Ag, Au, and so on, fall into this category, and effective film deposition is attained 

only when the source is heated into the liquid phase. On the other hand, elements such 

as Cr, Ti, Mo, Fe, and Si reach sufficiently high vapor pressures of 10-2 torr some 500oC 

below the melting point. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7 Thermal equilibrium for metal evaporations in form of Arrhenius plots. 
The dot marks are the metal melting points. 
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3.2 Characterization Method of La2O3 Gate Insulator 

 

Characterization methods of physical and electrical properties of La2O3 thin films 

are explained in this subsection. 

 

3.2.1 Spectroscopic Ellipsometry 

 

Spectroscopic ellipsometry technique is frequently used to estimate the optical 

thickness of La2O3 thin films. Fig. 3.8 shows conception for measuring optical thickness 

of thin film with spectroscopic ellipsometry. The polarized incident light is illuminated 

into the sample at the angle Φ0 of 70o. Afterward, the reflected light is polarized once 

again to detect the elliptic angle Ψ and the phase difference ∆. The film thickness is 

obtained from the fitting parameter of n-Cauchy model calculation. The best fitting 

result of the elliptic angle Ψ and phase difference ∆ of various light wavelength λ may 

give a reliable optical thickness. 

 

 

 

 

 

 

 

Fig. 3.8 Conception for measuring optical thickness of thin film with spectroscopic 
ellipsometry.  
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3.2.2 Transmission Electron Microscopy (TEM) 

 

Cross-sectional TEM (Transmission Electron Microscopy) is often used to observe 

the physical thickness or the thin film’s morphology. It is compatible for observing nano 

regime structure, as image resolution as high as 0.2-0.3 nm can be reached by TEM. Fig. 

3.9 illustrates schematic diagram for TEM observation. The principle is pretty similar to 

optical microscope since several magnetic lenses are used to magnify the object image. 

To penetrate the electron beam, sample as thin as 5-500 nm is. Interaction of electron 

beam with atomic arrangement in sample may produce interference pattern in 

transmitted electron beam. High-resolution image can be obtained from imaging the 

magnified transmitted electron beam. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9 A schematic diagram for TEM (Transmission Electron Microscopy) 
observation. Several magnetic lenses are used to magnify the object image. 
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3.3 Measurement Technique of Low-Frequency Noise 

 

The noise signals of high quality devices are usually very small. To measure such 

signals, nearly noiseless and high sensitivity appliances are highly required. Fig. 3.10 

shows schematic diagram for 1/f noise measurement system. The grounding is very 

important to reject the outside signal interferences. Since long and very long wave radio 

frequencies, it is recommended to measure the low frequency noise under a 

shielded-chamber. The 1/f noise measurement system is utilized with several 

equipments, i.e., DC monitor, low-noise DC source, signal analyzer, low-noise amplifier, 

wafer probe, 1/f noise interface unit, and ground unit. The first tree equipments are 

automatically controlled with Personal Computer (PC) via GPIB network interface. 1/f 

noise measurement program running under Agilent VEE (Visual Engineering 

Environment) software is used to manipulate the complexity of noise measurements. 

 

 

 

 

 

 

 

 

Fig. 3.10 Diagram for 1/f noise measurement system. As the noise signal is usually 
very small, nearly noiseless and high sensitivity appliances are in used. Grounding 
is important to reject the outside signal interferences.  
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3.3.1 Vector Signal Analyzer 

 

The noise power density of the device under test (DUT) is measured and analyzed 

with signal analyzer. In this experiment, we use Agilent HP89410A vector signal 

analyzer (VSA) as its photograph shown Fig. 3.11. To measure the noise signal, this 

equipment modulates signal in vector forms. We may measure noise signal as low as 

–160 dBv = 10 nVrms at 1kHz directly without pre-amplifier by setting the sensitivity 

of this equipment into the highest level. This equipment supports signal measurements 

over DC to 10 MHz frequency range, however, the 1/f noise measurement system 

allows 10 Hz to 10 MHz for measurement without pre-amplifier or 10 Hz to 100 kHz 

for measurement with amplifier.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.11 High sensitivity Agilent HP89410A vector signal analyzer (VSA). 
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3.3.2 Ultra-Low Noise DC Source 

 

In 1/f noise measurements, DUT must be operated properly by DC biasing. 

Shibasoku PA14A1 ultra-low noise DC source shown in Fig. 3.11 is used in this 

experiment to satisfy the requirements. This equipment is accommodated with 2 

channels with sufficiently low enough noise, i.e., CH 1: -126 dBv = 0.5 µVrms and CH 

2: -132 dBv = 0.5 µVrms at 1 kHz. Furthermore, these noise levels can be suppressed 

with RC Low-Pass (LP) filters that is utilized inside the 1/f noise interface unit. In case 

of nMISFET device, it is recommended to use CH 1 for biasing the gate and CH 2 for 

the drain, since the CH 2 has a half lower than CH 1 in noise power and the 1/f noise 

signal measured from the drain terminal. It is noted that PA14A1 DC source can not 

inverse its polarity and it should be done manually through the interface unit. 

 

 

 

 

 

 

 

 

Fig. 3.12 Shibasoku PA14A1 ultra-low noise DC source photograph. 
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3.3.3 Ultra-Low Noise Pre-Amplifier 

 

It is difficult to measure 1/f noise of high quality devices, since they have very low 

noise signals. To facilitate measurement of a very low noise, high gain ultra-low noise 

pre-amplifier is required to increase the measurement sensitivity. In this system, Pelkin 

Elmer EG&G 5184 ultra-low noise pre-amplifier is used to obtain noise floor as low as 

–178 dBv = 1.2 nVrms at 1 kHz as shown in Fig 3.13. This noise floor can be measured 

by shorting the pre-amplifier input with 50 Ω terminal stubs. As this equipment has flat 

gain of 60 dB along frequency range of 3 Hz to 300 kHz, it covers the supported 

frequency range of 10 Hz to 100 kHz of noise measurement. This pre-amplifier can be 

powered with either AC line or dry cell batteries. It is recommended to unplug the 

connector to the AC line, since it directly couple the AC line signal to the system. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13 Noise floor of the 1/f noise measurement system after utilized by EG&G 
5184 ultra-low noise pre-amplifier. 
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3.3.4 DC Source Monitor 
 

Before 1/f noise measurement, the device DC characteristics, such as 

transconductance, input and output resistance, must be measured for setting the 

expected bias of PA141A and for calculating or converting input reference noise power. 

Agilent 4156C semiconductor parameter analyzer is used in this system. Long, medium 

and short integration are available depending on the measured current value. It is 

recommended to use long or medium for bias setting of the order of nA. 

 

3.3.5 1/f Noise Interface Unit, Battery Unit and Ground Unit 
 

1/f noise interface unit is specifically designed to coordinate and assist all of 

equipments to be practical for 1/f noise measurement. It contains low-pass filters, load 

impedances, impedance matching, switching, and substrate bias controller. Most of 

cable connectors are using triaxial BNC to isolate the signals. The substrate bias can be 

applied with rechargeable battery unit controlled with high precision variable resistors. 

The photograph of 1/f noise interface unit, battery unit and ground unit is shown in Fig. 

3.14. 

 

 

 

 

 

 

Fig. 3.14 Photograph of 1/f noise interface unit, battery unit and ground unit.  
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3.4 Fabrication Method of Ultra-Shallow p+/n Junctions 

 

In this subsection, we discuss the fabrication process for ultra-shallow p+/n 

junctions.  

 

3.4.1 Device Fabrication Procedure 

 

Top view micrograph of p+/n junction with device area of 220µm×220µm and 

device fabrication flow chart is depicted in Fig. 3.15. Moreover, cross-sectional 

description of p+/n junction fabrication process is illustrated in Fig. 3.16. Device 

fabrication is beginning with plasma doping process and electrical activation annealing 

of 8 inches bare silicon wafers. The sample is cut into about 2 cm × 2 cm. The first 

lithography processes are for defining the junction device area. Post-baking is brought 

at higher temperature of 120oC. It is performed make the photo resist to have higher 

endurance against fluoride nitric acid etchant. Hydrogen fluoride (HF), nitric acid 

(HNO2), and DI water with composition of HF: HNO2: H2O = 1:1:2 in volume are used 

for etching silicon that is uncovered by photo resist. The second lithography process is 

done for defining the metal PAD region. After the Al metal deposition with vacuum 

thermal evaporation, PAD area is formed with lift-off process under acetone solution. 

Lastly, after taking native oxide in the back surface, back metal electrode is deposited 

once again with bell jar Al metal evaporator. 
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Fig. 3.15 Top view micrograph of p+/n junction with device area of 220 µµµµm × 220 
µµµµm and device fabrication flow chart. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.16 Cross-sectional description of p+/n junction fabrication process. 
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make plasma doping compatible for mass doping. The gas source is immersed in plasma 

environment into radicals, ions, or neutrals. Charge particles like ions can be accelerated 

in direction to the target wafer by means of a series of pulsed negative high-voltage.  

Photograph of plasma doping system and schematic diagram illustrating general 

conception of doping mechanism is depicted in Fig. 3.17. Two chambers (i.e., loading 

chamber and process chamber) and two high voltage RF-power supplies (i.e., for source 

and for acceleration bias) and Langmuir probe for measuring plasma distribution are 

utilized in the system. Helicon source give the system to have low-pressure and 

high-density plasma source. The process chamber is accommodated with turbo 

molecular pump with background pressure of 10-5 Pa. The doping process is carried out 

at pressure of 0.1 to 2.5 Pa. Several gases like helium (He), argon (Ar), neon (Ne), and 

diborane (B2H6) are available to be plasma targets in the process chamber. 

 

 

 

 

 

 

 

 

 

Fig. 3.17 Photograph of plasma doping system and schematic diagram illustrating general 
conception of doping mechanism. 
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3.4.3 Impurity Electrical Activation 

 

The impurity electrical activation is usually performed with annealing at high 

temperature for a very short time to avoid impurity diffusion into the deeper location. 

USJ are formed by high dose ultra-shallow doping method followed by nearly diffusion 

less annealing method. Plasma doping combined with millisecond annealing like Flash 

Lamp Annealing (FLA) or non-melt Laser Annealing (LA) appears to be the most likely 

alternatives for sub-10-nm USJ formations. 
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3.5 Characterization of Ultra-Shallow Junctions 

 

In this subsection, we explain the physical and electrical characterization method 

for ultra-shallow junction.  

 

3.5.1 Sheet Resistance Measurements 

 

In ultra-shallow junction, formation of shallower junction depth with lower sheet 

resistance is the main obstacle. There are many ways on measuring sheet resistance of a 

layer range from permanent contact, temporary contact to contactless techniques. For a 

semiconductor with resistivity ρ, the resistivity is defined by 

Eq. 3.2 

where n and p are the free electron and hole concentrations, and µn and µp are the 

electron and the hole mobilities, respectively. The sheet resistance is defined by 

Eq. 3.3 

where t is the layer thickness. The simplest way on measuring sheet resistance is by 

two-point probe (2pp) method. However, this technique is suffering from the contact 

resistance Rc at each metal probe/material contact and from the spreading resistance Rsp 

under each probe. Hence, it is difficult to obtain the correct sheet resistance value with 

two-point probe. 

The contact resistance Rc and spreading resistance Rsp can be eliminated with 

four-point probe (4pp) method. Fig. 3.18 shows schematic drawing for sheet resistance 

measurement with four point probes. The spaces among the probes are 1 mm. The 

( )pn pnq µµ
ρ

+
= 1

t
Rs

ρ=
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photograph of four-point probe instrument is given in Fig. 3.19. An appropriate weight 

of 50 ~ 150 grams are used to make punch through to the native oxides. This technique 

assumes that the sample is infinite in lateral area. For finite sample, geometrical 

correction factor must be applied to obtain the correct result. Fig. 3.20 depicts the 

correction factor for measurement of resistivity using four-point probe.  

 

 

 

 

 

 

 

Fig. 3.18 Schematic drawing for sheet resistance measurement with four point 
probes. Spaces among the probes are 1 mm. 

 

 

 

 

 

 

 

 

Fig. 3.19 Photograph of four-point probe instrument. An appropriate weight of 50 
~ 150 grams are used to make punch through to the native oxides.  
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Fig. 3.20 Correction factor for measurement of resistivity using four-point probe. 
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3.5.2 Secondary Ion Mass Spectrometry (SIMS) 

 

Fig. 3.21 shows measurement for analyzing element compositions, depth profiles, 

and surface properties with Secondary Ion Mass Spectroscopy (SIMS). This technique 

is limited to element detection and capable for analyzing most of elements, isotopes or 

molecular species. As shown in the figure, the basically SIMS measurement is 

destructive. It is bombarding the sample with primary ions (i.e., Ar+, O2
+, Cs+, and so 

on), the sputtered secondary ions are detected with energy analyzed and separated with 

mass spectrometer.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.21 Measurement for analyzing element compositions, depth profiles, surface 
properties with Secondary Ion Mass Spectroscopy (SIMS). 
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3.5.3 Atomic Force Microscopy (AFM) 

 

Schematic diagram for surface morphology observation with Atomic Force 

Microscopy (AFM) is shown in Fig. 3.22. In this experiment, tapping mode AFM 

observation is performed with Nano Scope 3 from Digital Instrument, co. ltd. In tapping 

mode AFM, the cantilever probe is vibrated at its resonance frequency, and scanned 

through the sample surface. The distortion is detected with deflection of the reflected 

angle of laser beams. While keeping the distance to the sample constant, the cantilever 

probe is scanned to in x-y directions. The surface morphology is three dimensionally 

imaged with computer.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.22 A schematic diagram for surface morphology observation with Atomic 
Force Microscopy (AFM). The surface morphology is three dimensionally imaged 
with computer. 
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3.5.4 Electrical Characterization 

 

Leakage current in p+/n junctions has strong dependencies in temperature. The 

activation energy of generation caused by deep traps or diffusion current caused by 

recombination in neutral regions can be separated with temperature dependence I-V 

measurements. Fig. 3.23 shows photographs for wafer probes and stage temperature 

controller. Wafer measurements at temperature -40oC to 150oC are enabled with 

Temptronic temperature controller. For electrical measurement below room temperature, 

purging with air is needed to blow out the water moisture. The I-V characteristic is 

measured with Agilent 4156C semiconductor parameter analyzer, while the reverse-bias 

C-V characteristic is measured with Agilent 4284A multi-frequency LCR meter. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.23 Photographs for wafer probes and stage temperature controller. Wafer 
measurements at temperature -40oC to 150oC are enabled with Temptronic 
temperature controller. 
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Chapter 4. Low-Frequency Noise of La2O3 Gate 

Insulated NMISFET 
 

 

Low-frequency noise in MOSFET is usually in form of 1/f γ noise with 0.8 < γ < 

1.2 so as it is called “1/f noise”. 1/f noise is an important parameter in analog or 

mixed-signals design, as excess in this kind of noise may limit the device performances 

and functionalities. In high frequency (HF) applications, the 1/f noise spectrum is up 

converted to give rise to phase noise in oscillator, mixer, or modulator. It is difficult to 

obtain low power with high precision frequency by noisy (1/f noise) active device, as 

higher Q value is needed. On the other hand, in device process fabrication, 1/f noise is 

useful to analyze or control of the silicon-insulator interface quality. In this chapter, we 

discuss the measurement and analytical results of La2O3 gate insulated NMISFET.  

 

4.1 Measurement Technique of the Low-Frequency Noise 

 

Fig. 4.1 depicts the equivalent circuit of the 1/f noise measurement system. The 

Device-Under-Test (DUT) is biased with two channels low noise DC source. The bias 

currents or voltages are filtered with RC low-pass filters to reject the interference noises 

coming from DC source. The current noises in MOSFET’s channel influence the drain 

voltage fluctuations. As the drain noise signals are very small, the signals must be 

amplified properly. In this experiment, a typical 60 dB ultra low noise a pre-amplifier 

power-supplied by batteries is used. The amplified noise signals are measured and 
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analyzed with vector signal analyzer (VSA). Performing measurements under a shielded 

chamber is highly recommended, as much of interferences from long wave radio 

frequency can be reduced. 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Equivalent circuit of 1/f noise measurement systems. RC low-pass filters 
are applied to reject noises coming from the DC source. The drain noise signals are 
amplified with a 60 dB pre-amplifier before measuring them with vector signal 
analyzer (VSA). 
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Fig. 4.2 The cross-sectional TEM photograph of Al/La2O3/Si MIS capacitor. The 
La2O3 physical thickness of about 3 nm and a good silicon interface were obtained 
after post deposition annealing in O2 ambient at 400oC for 5 min. 
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nm. Relation between the physical thickness tox and EOT can be given as the following. 

Eq. 4.1 

Where, εhigh-κ and εSiO2 is dielectric constant of high-κ and SiO2, respectively. As a 

result, by assuming the dielectric constant of SiO2 is 3.9, the dielectric constant of 

La2O3 thin film of 10.6 can be calculated with the Eq 4.1 above. The calculated fix 

charge Qfix from flatband shift is around 2×1013 eV-1cm-2. Assuming the fix charge 

distributed in uniformly in the insulator, we obtain charge density of 6.5×1013 eV-1cm-3. 

The J-V characteristic of tox ~ 3 nm Al/La2O3/Si MIS capacitor is given in Fig 4.4. 

From Fig 4.4, it is clear that La2O3 with EOT as low as 1.1 nm has low leakage current 

density of 9×10-2 A/cm-2 at +1 V. This result is comparable to Zr-silicate or Alumina 

(Al2O3) as plotted in Fig 1.7 in Chapter 1. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 The C-V characteristics of tox ~ 3 nm Al/La2O3/Si MIS capacitor. 
Significant negative flatband shift of ~1 V caused by positive fixed charge in 
insulator and small hysteresis of less than 100 mV was observed. 
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Fig. 4.4 The J-V characteristics of tox ~ 3 nm Al/La2O3/Si MIS capacitor. La2O3 
with EOT of 1.1 nm and leakage current density of 9×10-2 A/cm-2 at +1 V was 
obtained. 
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gate insulated NMISFET with channel area of W×L = 54 µm×2.5 µm. From the figure, 

it can be found that La2O3 NMISFET with tox ~ 8 nm shows low subthreshold swing 

value of 105 mV/dec, high peak transconductance of 400 µS, and good DIBL 

characteristics as Vd was changed from 0.1 V to 1 V. However, negative subthreshold 

voltage Vth of –0.6 V that gives the transistor to normally on was observed. This is 

probably caused by excess of positive fixed charge in the thin films. 

The Id-Vd characteristics of W×L = 54 µm×2.5 µm NMISFET is shown in Fig. 4.6. 

It shows that high drive current of 110 µA/µm at Vg = 1.2 V and good saturation 

characteristics with low short channel effects can be obtained with La2O3 NMISFET. 

The normally on transistor as explained in the Id-Vg above is observed as saturation 

currents of 20 µA/µm at Vg = 0 V. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5 Typical static characteristics of NMISFET with channel area W×L = 54 
µµµµm×2.5 µµµµm. Subthreshold swing value of 105 mV/dec and good DIBL 
characteristics was obtained with tox ~ 8 nm La2O3 NMISFET. 
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Fig. 4.6 The Id-Vd characteristics of W×L = 54 µµµµm×2.5 µµµµm NMISFET. Good drive 
current and saturation characteristics can be obtained with La2O3 gate insulated 
NMISFET. 
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is generated from the combination of correlated carrier number and mobility fluctuation 

(∆n-∆µ) and pure mobility fluctuation (∆µ). Correlated carrier number and mobility 

fluctuation is modified 1/f noise model originated from McWhorter’s generation and 

recombination (GR) noise model. While pure mobility fluctuation is a semi empirical 

model based on Hooge’s 1/f noise model. 

Pure carrier number fluctuation is a physical model developed by McWhorter for 

the first time. It explains that fluctuation in drain current is originated from dynamic 

carrier trapping-detrapping in near silicon-insulator interface traps. In the later, it is 

modified into correlated carrier number and mobility fluctuations. This modified model 

takes into account modulation of coulomb scattering induced by trap charges or 

trapping-detrapping phenomena. From correlated number and mobility fluctuations, the 

normalized spectral power density of drain current noise Sid/Id 
2 can be expressed as the 

following. 

 

Eq. 4.2 

Where gm is the device transconductance, µeff is the effective carrier mobility, Cox is the 

gate dielectrics capacitance, and αsc is coulomb scattering coefficient. The 

input-referred spectral power density Svg is described by the following expression. 

 

Eq. 4.3 

Where λ is the tunnel attenuation distance (≈0.1 nm), Nt the trap density (in 

eV-1cm-3) of the gate dielectrics at Fermi level energy, k Boltzmann’s constant, T the 

absolute temperature, f the frequency, W the channel width and L the channel length. 
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The first term in the parenthesis in Eq. 4.2 is the original form of carrier number 

fluctuation, while the second term accounts for the correlated mobility fluctuation, 

where its strength is shown by the αsc coefficient. 

A part from correlated carrier number and mobility fluctuation, an empirical 1/f 

noise model was built up by Hooge, so-called pure mobility fluctuation. According to 

Hooge’s hypothesis, the drain current fluctuation is originated by variation of carrier 

mobility induced by lattice scattering. The normalized current noise spectral density is 

illustrated in the following expression. 

 

Eq. 4.4 

Where αH is Hooge’s empirical parameter and Qinv is the total inversion charge. The 

original of Hooge’s parameter αH was a universal constant with value of about 2×10-3 

for homogeneous samples. However, recent results have shown that the dimensionless 

αH may vary several orders of magnitude, depending on the crystalline quality of the 

materials. A newly refined Hooge’s parameter is given as the following equation. 

 

Eq. 4.5 

Where αlatt is Hooge’s constant (≈2×10-3, the original of Hooge’s parameter) and µlatt is 

carrier mobility due to lattice scattering only. Defect less good materials have low αH 

value, correspond to low 1/f noise and vise versa. Values in the range of ~10-6 to ~10-3 

have been found for silicon.  
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by access resistance fluctuation is given in the following relation. 

 

Eq. 4.6 

Where Rsd is source-drain series resistance and SR is resistance power spectral density. 

The total current noise in MISFET is the summation of the above all fluctuations. As a 

result, it takes in the following form. 

 

Eq. 4.7 

The above all fluctuations is usually discriminated with Sid/Id
2-Id and (gm/Id)2-Id in plots. 

Pure number fluctuation performs dependency to second order of (gm/Id), while 

correlated mobility fluctuation remote the first and zero order. On one hand, pure 

mobility fluctuation shows independency to (gm/Id). However, it is in the form of Id
-1. 

 

4.5.1 Effect of Biasing to the Noise Power Level 

 

The dynamic characteristics of noise power spectrum is changing depend on the 

biasing conditions that determine the basic MISFET parameters. The gate voltage Vg 

defines the number of inversion charge, while the drain voltage Vd allows the number 

carrier that flow from source to drain. Fig. 4.7 illustrates typical spectrum power density 

of drain current noise characteristics of W×L = 54 µm×2.5 µm NMISFET with different 

drain bias voltages. From the figure, it can be explained that 1/f noise spectrum 

increases with the drain voltage, and noise saturation are obtained as the transistor 

switches to saturation region. It can be seen that the noise spectrums perform no specific 
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humps that related to dominancy of single level generation-recombination noise. 

Immediate jump of the noise power spectrum in frequency increases with factor 50 Hz 

is caused by the interference of a certain harmonic of AC line, as several appliances are 

powered by AC line.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 Typical spectrum power density of drain current noise characteristics of 
W×L = 54 µµµµm×2.5 µµµµm NMISFET with different drain bias voltages. 1/f noise 
spectrums show no specific humping and increases as the drain voltage increases. 
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of trap from the surface, the longer the time needed for tunneling. As a result, 1/f noise 

with γ < 1 shows the dominancy of fast traps or traps with shallower distances from the 

surface. Then, for 1/f noise with γ > 1, slow traps or traps with deeper distances from the 

surface will much more dominant.  

Fig 4.8 and 4.9 provide the frequency index γ for La2O3 and thermal SiO2 

NMISFET, respectively. As depicted in the figures, the frequency indexes tend to 

increase with the gate voltage Vg-Vth, showing that access to traps located in the deeper 

is dominant as the gate voltage increases. Variation in trap distribution for thermal SiO2 

is smaller than La2O3, providing better traps uniformity. A small dip of frequency index 

in lower gate voltage might be as a result of carrier interaction with high density of 

interface states that are caused by un-terminated Si dangling bonds. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8 Frequency index γγγγ distribution of for La2O3 NMISFET. Small dip in lower 
gate voltage might be caused by high density of the interface states.  
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Fig. 4.9 Frequency index as a function of Vg-Vth for thermal SiO2 NMISFET. 
Thermal SiO2 performs a good uniformity in trap distribution. 

 

4.5.3 Impact on Channel Length Scaling to the Noise Level 

 

The Impact of channel length scaling to the noise power density of drains      

current noise in La2O3 NMISFETs is depicted in Fig 4.10. The drain current noise 

power densities Sid increase with the channel length scaling; following L-3 rule. This is a 

common phenomenon for NMISFET that can be explained with converting Eq. 4.3 into 

the following. The transconductance gm can be obtained with differentiating the drain 

current equation by the gate voltage as shown in the following. 
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In split-CV, the effective mobility µeff is measured as following formula.  

Eq. 4.9 

From Eq. 4.8 and Eq. 4.9, the inversion charge can be expressed as below. 

Eq. 4.10 

Finally, by substituting Eq. 4.4, Eq. 4.8 and Eq. 4.10 into Eq. 4.2, we can get 

 

Eq. 4.11 

According to this equation, when everything else is held constant, it is clear that the 

noise power density of drain current is proportional to L-3. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10 Impact of channel length scaling to the noise power density of drain      
current noise in La2O3 NMISFETs. The noise level follows L-3 rule with the channel 
length scaling. 

1E-22

1E-21

1E-20

1E-19

1E-18

1E-17

1E+0 1E+1 1E+2
L (µµµµm)

S id
 (A

2 /H
z)

L-310-18

10-19

10-20

10-21

10-17

101 102100
10-22

Vd = 0.1 V
f = 100 Hz

W = 54 µµµµm

Vg = Vth

1E-22

1E-21

1E-20

1E-19

1E-18

1E-17

1E+0 1E+1 1E+2
L (µµµµm)

S id
 (A

2 /H
z)

L-310-18

10-19

10-20

10-21

10-17

101 102100
10-22

Vd = 0.1 V
f = 100 Hz

W = 54 µµµµm

Vg = Vth

( )inveffscdeff
t

id QV
L
W

f
NkTqS µαµλ

γ += 13

2

dinv

d
eff VQ

I
W
L=µ

m

d
oxinv g

ICQ =



 74

4.5.4 Access Resistance Noise and Shot Noise 

 

The normalized noise power density of drain current WL×Sid/Id
2 as a function of 

gate voltage can be found in Fig. 4.11. From the figure, it can be seen that no specific 

shot noise and access series resistance noise were observed along the measured bias 

regions. The solid lines are the calculation results from the 1/f noise model. The noise 

levels are decrease with the increasing gate voltage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.11 Normalized drain current noise power density WL×Sid/Id
2 as a function of 

gate voltage. The noise is decreases as the gate voltage increases. No specific shot 
noise and access series resistance noise were observed at the measured bias regions. 
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4.5.5 Discrimination to the Mechanism of the Noise 

 

To discriminate the mechanism in low-frequency range, Sid/Id
2-Id and (gm/Id)2-Id is 

plotted as shown in Fig. 4.12. The experiment results of normalized drain current noise 

power density WL×Sid/Id
2 is in symbol marks, normalized square transconductance 

gm
2/Id

2×Const. (Const. = q2kTλNt/Cox
2f) obtained from Id-Vg is in solid-lines. WL×Sid/Id

2 

plots following gm
2/Id

2×Const. curves are noises caused by pure number fluctuation, 

while plots following the Id
-1 curve line are thought to be the mobility fluctuation.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.12 Normalized drain current noise power density WL×Sid/Id
2 (symbols) and 

normalized square transconductance gm
2/Id

2×Const. (solid-lines) as a function of 
drain bias current, where Const. = q2kTλλλλNt/Cox

2f. Channel mobility fluctuation 
follows Id

-1 rule, while number fluctuation follows normalized square 
transconductance. 
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4.5.6 Fitting Results from the Modeled Noise 

 

Fitting results of noise level from unified model low-frequency noise can be found 

solid lines in Fig. 4.13.  This model is based on combined number fluctuation, 

correlated number – mobility fluctuation and mobility fluctuation models as mention in 

the above. For calculation, we suggest the trap density of Nt ~ 4×1019 eV-1cm-3 for 

La2O3 NMISFET, while for thermal SiO2 is Nt ~ 2×1018 eV-1cm-3. The trap density value 

for La2O3 NMISFET is of the same order of fix charge density obtained from flatband 

shift. Discrepancy to the exact value might be due to non-uniformity distribution of 

fixed charge in the film or the precision in fitting calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.13 Calculation results (solid-lines) of the low-frequency unified modeled 
based on combined number fluctuation, correlated number – mobility fluctuation 
and mobility fluctuation models. 
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Fig. 4.14 demonstrated the normalized drain current noise level WL×Sid/Id
2 in 

symbol marks and the calculation results in solid lines plotted as a function of 

normalized square transconductance gm2/Id
2×Const. The noise linearity against 

normalized transconductance near the threshold voltage shows the domination of noise 

due to carrier trapping /detrapping fluctuations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.14 Normalized drain current noise level WL×Sid/Id
2 (symbols) and calculation 

results (solid lines) as a function of normalized square transconductance 
gm

2/Id
2×Const. Linearity near the threshold voltage shows the domination of noise 

due to carrier trapping /detrapping events. 
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Fig. 4.15 depicts Hooge’s empirical parameters αH obtained from the fitting results 

of normalized drain current noise level (WL×Sid/Id
2) plotted as a function of drain 

voltage. As demonstrated in the figure, the dimensionless αH decreases with drain 

voltage Vd showing that the carrier feels less phonon scattering as the higher electric 

field applied. The experiment result gives the apparent αH value for thermal SiO2 

NMISFET of several 10-6 that is of the same value to the reported data. On the other 

hand, La2O3 NMISFET exhibits two orders higher than SiO2, i.e., several 10-4. This 

might be due to carrier scattering by higher state densities in Si-La2O3 interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.15 Hooge’s constant parameters ααααH obtained from the fitting results of 
normalized drain current noise level (WL×Sid/Id

2) as a function of drain voltage. 
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4.5.7 Benchmarking with Roadmap Requirements 

 

Fig. 4.16 exhibits comparison the gate reference noise normalized by EOT 2/WL 

with 1/f noise requirements for NMOS analog speed device in ITRS 2004 update 

version. Excess of 1/f noise of 1~2 orders for La2O3 gate insulator was observed. This 

might be a severe problem for the use La2O3 gate insulator for analog speed device.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.16 Gate reference noise normalized by EOT2/WL compares to 1/f noise 
requirements for NMOS analog speed device in ITRS 2004 update version. Excess 
of 1/f noise of 1~2 orders might be a severe issue for use of La2O3 gate dielectric for 
analog speed device. 
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4.6 Summary of This Chapter 

 

So far, we have been evaluating the low-frequency characteristics of La2O3 gate 

insulated NMISFET. The noise power density of MISFET has dependency on the DC 

biasing conditions. Measurements from weak to strong in both linear and saturation 

were carried out in a shielded chamber. The noise spectra exhibit no specific hump that 

corresponds to dominancy of single trap. However, the frequency index γ was varied 

from 0.75 to 1.1 for La2O3 NMISFET. It indicated that the traps give a particular 

distribution in the insulator. It might be concluded that La2O3 NMISFET performs high 

state density at the Si-La2O3 interfaces. 

For relatively long channel NMISFETs, it could be shown that the noise levels 

follow proportionality with L-3 when the metallurgical channel lengths are scaled down. 

Our experiment data give the same characteristics. However, in practical scaling method, 

both lateral and vertical dimensions of MISFET are reduced with the same factor. As a 

result, we still get the advantage of 1/f noise reduction, as the noise level is proportional 

to Cox
2. 

Fitting results of noise level from unified low-frequency noise model suggested the 

trap density of Nt ~ 4×1019 eV-1cm-3 for La2O3 NMISFET, while for thermal SiO2 is Nt ~ 

2×1018 eV-1cm-3. The trap density value for La2O3 NMISFET was of the same order of 

fix charge density obtained from flatband shift. Discrepancy to the exact value might be 

due to non-uniformity distribution of fixed charge in the film or the fitting error. La2O3 

NMISFET exhibited higher apparent αH value than that of thermal SiO2. Mobility 

fluctuation might be due to carrier scattering by higher state densities in Si-La2O3 

interface rather than the damaged Si crystalline. 
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Finally, by comparing with 1/f noise requirements for NMOS analog speed device 

in ITRS 2004 update version, we can get the excess of 1/f noise of 1~2 orders for La2O3 

gate insulator. This might be a severe problem for the use La2O3 gate insulator for 

analog speed device. Suppressing interface state densities as well as fix charge densities 

should be addressed as they are suspected to be the main factor of the increasing such 

noise. 
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Chapter 5. Electrical Properties of 

Ultra-Shallow p+/n Junctions 
 

 

The main objective of forming ultra-shallow junctions in source/drain extension is 

to suppress the short channel effects in transistors. The shallower the junction depth, the 

more short channel effect can be suppressed. Generally, shallower the junction gives 

higher sheet resistance which is correlated to drive current degradation. While 

maintaining the sheet resistance, forming shallower junction depth is a must in 

ultra-shallow junction formation. 

 

5.1 Calculation on Activated Dopant Concentration 

 

The effectiveness of electrical activation annealing can be examined by activation 

rate that is defined as below. 

 

Eq. 5.1 

The electrically activated carrier dose is usually measured with Hall-Van der Pauw 

method that is difficult to perform. Estimation of the electrical activated dose can be 

calculated with SIMS profile and Rs. Fig. 5.1 illustrates calculation of activation dopant 

concentration or dose by using SIMS profile, carrier mobility, and sheet resistance value. 

The carrier mobility is assumed to be dependence on the impurity concentration as 

describe in Appendix D. 

( ) %100% ×=
dosetotal

dosecarrieractivatedlyelectricalrateactivation
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The activated dose NS at xn is calculated as the following. 

Eq. 5.2 

At this point the activated dose may give the sheet resistance Rs  

Eq. 5.3 

We may increase the dopant concentration up to calculated sheet resistance giving the 

same value to the measure Rs. Here, we get both activated dopant concentration and 

dose. The total dose is integration of the SIMS profile to the depth. Finally, activation 

rate can be estimated with Eq. 5.1 above. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Illustration of activation dopant concentration or dose by using SIMS 
profile, carrier mobility, and sheet resistance value. 
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5.2 Junction Leakage Characteristics of Ultra-Shallow p+/n 

Junctions 

 

Leakage current of p/n junction is one of the main parameter affecting the 

performances of devices such as photodiodes, charge couple devices (CCDs), dynamic 

random access memories (DRAMs), or off-state leakage current MOSFET devices. It is 

also related to fundamental properties of silicon materials such as recombination 

lifetime, generation lifetime, and surface recombination velocity. It is well known that 

there are three major components in p/n junction leakage: diffusion, generation, and 

surface generation components. The first two components are proportional to the area of 

the junction, and thus are called are components. The latter is proportional to the 

perimeter of the junction, and is thus called a perimeter component. Using junctions 

with the same area and different perimeters, we can separate the area and the perimeter 

components. However, it is not possible to separate the two area components, and only 

one of them is considered to dominate by the results of temperature dependence 

measurements. 

The area and the perimeter components can be separated with two different 

geometrical junctions. Suppose two junctions with square type. Their perimeter length 

ratio is x and the area ratio is x2. Total current flowing in the first junction is I1, and the 

second is I2. Then we may find, 

Eq. 5.4 

Eq. 5.5 

From Eq. 5.4 and Eq. 5.5, we may calculate Iarea and Iperimeter in the first junction as the 

perimeterarea xIIxI += 2
2

perimeterarea III +=1
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following. 

Eq. 5.6 

Eq. 5.7 

Hence, for the second junction, we get the area and the perimeter components as x2Iarea 

and xIperimeter, respectively. 

The three major components of one sided p+/n junction leakage current are 

expressed as the following.  

(1) Diffusion component 

Eq. 5.8 

where q is the electron charge, Dp is the diffusion constant of holes, ni is the intrinsic 

carrier density, ND is the donor density, and Ln is the diffusion length of hole. 

(2) Generation component 

Eq. 5.9 

where τg is generation lifetime and W is the depletion width. 

(3) Surface generation component 

Eq. 5.10 

where S0 is the surface recombination velocity and Ws is the depletion width at the 

surface, L is the perimeter length of the junction, and A is the junction area.  

The diffusion current is caused by generation in the neutral region and diffusion to 

the depletion region. The generation current is caused by generation in depletion region. 

Lastly, the surface generation current is caused by generation in depletion region at the 

junction edges. It can be due to Si/SiO2 interfaces or structural defects.  
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5.2.1 Perimeter Currents, Physical Stress Effects, and 

Device-to-Device Dispersion 

 

Mesa-typed p+/n junctions may have very large peripheral currents due to lattice 

structural defects at the edges. The ratio of area to perimeter component currents as 

function of side length of the junctions and pictorial of the origins of peripheral currents 

is illustrated in Fig. 5.2. To obtain area current of 10 times larger then its peripheral, 

junctions with 6mm×6mm is required. Somehow, the perimeter component value may 

increase depending on the etching results.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 The ratio of area to perimeter component currents as function of side 
length of the junctions and pictorial of the origins of peripheral currents. To obtain 
area current of 10 times larger then its peripheral, junctions with 6mm×6mm is 
required. 
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Considerably, edge rinsing or recovery can reduce the perimeter current component 

of mesa-typed junction. Edge recoveries by oxidation are worsening the case, since low 

quality of silicon dioxide give addition to the peripheral current. Fig. 5.3 shows the I-V 

characteristics after chemical oxide edge treatment by dipping in hydrogen peroxide 

H2O2 for 30 min. The reverse bias current is increasing up to three orders higher than 

the initial value.  

Edge recovery with oriental selectivity silicon etchant might be the solution to 

lower the peripheral currents regarding to improve the quality of the edges. Fig. 5.4 

shows calculated peripheral currents of mesa-type p+/n junctions after dipping in photo 

resist developer for 15 min. While, the calculated area component of sample after edge 

treatment with photo resist developer for 15 min is shown in Fig. 5.5. Junction with 

820µm×820µm gives 5 times higher in area component current than its perimeter. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 I-V characteristics after edge treatment with hydrogen peroxide H2O2 for 
30 min. 
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Fig. 5.4 Calculated peripheral currents of mesa-type p+/n junctions after dipping in 
photo resist developer for 15 min. 

 

 

 

 

 

 

 

 

 

Fig. 5.5 Calculated area component of sample after edge treatment with photo 
resist developer for 15 min. Junction with 820µµµµm×820µµµµm gives 5 times higher in 
area component current than its perimeter. 
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Device-to-device variation in the same sample is shown in Fig. 5.6, and it is 

considerably small and negligible. The probe’s physical stress result is given in Fig. 5.7. 

Device with junction depth Xj of 5.2 nm is relatively strong enough against physical 

stress. The junction is showing spurious currents after stressing by lowering the probe of 

about 100 µm. Fig. 5.8 provides reverse-biased currents as a function of time after 

temperature indicator giving the setting value. The currents are fluctuated due to 

instability of temperature near room temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6 Device-to-device variation in the same sample is considerably small. 

 

1E-11

1E-10

1E-09

1E-08

-3 -2 -1 0

Bias Voltage VB (V)

Cu
rre

nt
 I (

A)

a = 820μμμμm

a = 220μμμμm

a = 120μμμμm

a = 420μμμμm

Xj = 4.8 nm

1E-11

1E-10

1E-09

1E-08

-3 -2 -1 0

Bias Voltage VB (V)

Cu
rre

nt
 I (

A)

a = 820μμμμm

a = 220μμμμm

a = 120μμμμm

a = 420μμμμm

Xj = 4.8 nm



 90

 

 

 

 

 

 

 

 

 

Fig. 5.7 Device with junction depth Xj of 5.2 nm is relatively strong against 
physical stress. The junction is showing spurious currents after stressing by 
lowering the probe of about 100 µµµµm. 

 

 

 

 

 

 

 

 

 

Fig. 5.8 Reverse-biased currents as a function of time after temperature indicator 
giving the setting value. The currents are fluctuated due to instability of 
temperature near room temperature. 
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5.2.2 Leakage Current Characteristics of Plasma Doped 

Ultra-Shallow p+/n Junctions 

 

Plasma doping (PD) achievements with spike RTA and flash lamp annealing (FLA) 

is provided in Fig. 5.9. Shallow junction with Xj ranges from 15 nm to 45 nm can be 

obtained with spike RTA, while Xj of less than 15 nm flash lamp activation annealing 

should be used. Fig. 5.10 shows comparison of reverse leakage current of plasma 

doping with both spike RTA and flash lamp annealing combinations. The peripheral 

currents are eliminated with dual-geometrical devices. Flash lamp annealing gives one 

order higher than spike RTA in leakage current. For overall result of reverse leakage 

current measured with VB = -1V at room temperature is given in Fig. 5.11. These are 

total current of junction devices with 220µm×220µm. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.9 Plasma doping (PD) achievements with spike RTA and flash lamp 
annealing (FLA). 
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Fig. 5.10 Comparison of reverse leakage current of plasma doping with both spike 
RTA and flash lamp annealing combinations. The color corresponds to the plotted 
Rs-Xj in Fig 5.9. The peripheral currents are eliminated with dual-geometrical 
devices. 

 

 

 

 

 

 

 

 

 

Fig. 5.11 Overall result of reverse leakage current measured with VB = -1V at room 
temperature. These are total current of junction devices with 220µµµµm×220µµµµm. 
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5.2.3 Plasma Doping and Spike RTA Combination 

 

Temperature dependence of reverse biased J-V corrected with dual geometrical 

devices of Spike RTA annealed plasma doping sample is given in Fig. 5.12, while the 

Arrhenius plots at VB = -0.3 V is shown in Fig. 5.13. The activation energy of the 

deep-trap level is observed as the silicon band gap. This shows that diffusion currents 

are dominant at the measured temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.12 Temperature dependence of reverse biased J-V corrected with dual 
geometrical devices of PD + Spike RTA sample. 
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Fig. 5.13 Activation energy of the deep-trap level is observed as the silicon band 
gap. This shows that diffusion currents are dominant at the measured 
temperature. 
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frequency of C-2-V and W-V plots for flash lamp annealed plasma doping samples with 

Xj = 4.8 nm. From the slope and intersection with x-axis of C-2-V curve, substrate 
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Fig. 5.17 shows generation lifetime τg calculated from J-W curve. Generation lifetime 
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Fig. 5.14 Temperature dependence of reverse biased J-V corrected with dual 
geometrical devices of PD + FLA sample with Xj = 4.8 nm. 

 

 

 

 

 

 

 

 

 

Fig. 5.15 Activation energy of the deep-trap level is observed as Ea = 0.77 eV.  
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Fig. 5.16 High frequency of C-2-V and W-V plots for PD + FLA samples with Xj = 
4.8 nm. From the slope and intersection with x-axis of C-2-V curve, substrate 
doping ND and junction built-in potential Vbi can be calculated. 

 

 

 

 

 

 

 

 

 

Fig. 5.17 Generation lifetime calculated from J-W curve. 
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5.3 Total Trap Densities with Capacitance Method 

 

There are many ways in measuring the deep level trap densities of p/n junction 

with each having strengths and weaknesses. Deep level transient spectroscopy (DLTS) 

seems to be the most commonly used because of its measurement sensitivity. However, 

steady-state capacitance measurement technique might be considerable due to its 

simplicity. For semiconductor with shallow level donors and deep level acceptors, 1/C2 

is given as the following. 

Eq. 5.11 

The slope can be obtained by differentiating Eq. 5.11 against bias voltage V, that is 

Eq. 5.12 

For high frequency (HF) reverse-biased capacitance measurement gives t → ∞, and 

consequently nT(∞) ≈ 0. On the contrary, for steady-state (LF) measurement, it gives t 

→ 0, and nT(0) ≈ NT. This is applicable for en >> ep. The difference of the slopes gives 

the deep-level impurity as expresses in the following form. 

Eq. 5.13 

Steady-state reverse-biased capacitance can be measured with quasi-static C-V 

measurements with Agilent 4156C semiconductor analyzer. However, this requires 

extremely low leakage current. 

Frequency dependence of C-2 curves vs. bias voltage VB is plotted in Fig. 5.17. The 

lowest three curve lines are measured with quasi-static technique with different junction 

area, while the highest curves are measured high frequency of 1 MHz. Dispersion of 

quasi-static C-2 curves is considered to be the effects of peripheral defects. 
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Fig. 5.18 Frequency dependence of C-2 plots vs. bias voltage VB. The lowest three 
curve lines are measured with quasi-static technique with different junction area, 
while the highest curves are measured at 1 MHz.  

 

5.4 Summary of This Chapter 

 

Junction device parameter extraction can be performed with J-V and C-V 

measurements. Deep-level traps can be characterized by their temperature dependence. 

However, in mesa-typed junctions, this is very difficult to do that because of intolerable 

perimeter current dominations. 

Very low reverse-biased currents were obtained with PD and spike RTA or flash 

lamp annealing by using substrate doping of about 5×1014 cm-3. The recombination 

lifetime is several 10-7 sec. The depletion width stretches in substrate direction for 

several µm. 
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Chapter 6. Conclusions and Future Issues 
 

 

We have been so far evaluating the low-frequency noise in NMISFET with e-beam 

evaporated La2O3 gate dielectrics and with thermal SiO2 for comparative study. 

Furthermore, the electrical properties of ultra-shallow p+/n junction formed by plasma 

doping process over high resistivity substrate of 8-12 Ω-cm were explored extensively. 

In this chapter, we may take several conclusions and state the expected formation, and 

future issues. 

 

6.1 Conclusions 

 

This work contains two studies, i.e., low-frequency noise and ultra-shallow p+/n 

junction studies. The results of this work are stated accordingly as below.  

 

6.1.1 Low-Frequency Noise 

 

The La2O3 NMISFET exhibits high 1/f noise. The gate reference noise normalized 

by EOT2/WL is in the order of 1-2 orders higher than roadmap requirement for NMOS 

high-speed analog device. This problem can be traced from the origins of 1/f noise, 

which is mainly caused by the excessive of trap densities of NT ~ 4×1019 /eV-cm3 and 

high phonon scattering coefficient of αH ~ 10-4 – 10-3. The excessive of trap densities 

may raise the remote scattering coefficient of αsc ~ 8×10-4 Vs. Traps in the insulator is 
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on positive fix charge type. This is probably caused by oxygen vacancies since La2O3 

thin film was deposited in ultra-high vacuum condition (10-7 – 10-8 Torr) and 

insufficiency in introducing oxygen during post deposition annealing. In the second 

hand, it is difficult to make a statement to the main factor of phonon scattering. 

However, phonon scattering seems to be in existence for most of NMISFETs with 

high-k gate dielectric since mobility lowering at middle electric field often to be 

observed. It can be speculated that phonon scattering is probably as a result of ionic 

bonding of the high-k materials, metal gate lattice, or e-beam radiation. There has been 

report that e-beam radiation may physically bombard the quality of metal lattice and 

give rise to phonon scattering coefficient. After all, high 1/f noise level may restrict the 

adoption of La2O3 gate dielectrics in NMOS for HF or AMS applications, and solutions 

to this issue should be addressed. 

 

6.1.2 Ultra-shallow p+/n Junctions 

 

When characterizing very low leakage currents, mesa-typed p+/n junctions are 

suffering from the peripheral current effect that is determined according to how they 

were etched. Oxidizing the edge was not the solution since low quality of the oxide may 

enhance the perimeter currents. Edge recovery with oriental selectivity silicon etchant 

may lower the peripheral currents regarding to improvement the quality of the edges. 

Otherwise, we may ignore the perimeter currents by using junction area as wide as 

6mm×6mm. It is due to area to perimeter ratio is about one order.  

To extract the activation energy of deep-level traps, reverse-biased current 

measurements over temperature range is required. Higher temperature gives the silicon 
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band gap energy level, since diffusion current is strong function against temperature. 

Lower temperature will extract the activation energy of the deep-level traps. In 

mesa-typed junctions, this is very difficult to do because of intolerable perimeter current 

dominations in lower temperature. 

 

6.2 Future Issues 

 

For low-frequency noise in La2O3 NMISFET, suppressing the trap density might be 

the first priority in thin film formation. It could be carried out with lower vacuum 

pressure deposition process or sufficiently annealing the thin films under the best-suited 

ambient gases. Condition in deposition must be optimized to obtain high quality thin 

films. The second, the most suitable metal gate with middle band gap work function 

should be applied to control the threshold voltage. The third, an attempt to use another 

surface treatment like nitridation may lead to improvement of the channel interfaces 

with lower 1/f noise level. Lastly, if the phonon scattering is caused by electron beam 

radiation, sintering process may recover the crystalline quality of the Si channel. 

For ultra-shallow p+/n junction, peripheral current must be suppressed to allow 

deep-level traps extraction. This should be able to be done with LOCOS separated 

junction device with at least two device areas. While for trap that is very near to doping 

layers, higher doped substrate must be used to make the depletion width narrower. 

Impurity doping for higher doped substrate might be different to lower doped substrate 

since there are many active carriers that must neutralize the initial opposite carrier. 

Considering the next channel substrate doping for MOSFET, doping technique with this 

substrate must be established. 



 102

Appendixes  
 

 

There have been many measurements on the physical characteristics of 

semiconductor materials like resistivity, band gap, intrinsic carrier concentration, drift 

mobility or minority carrier mobility. These physical characteristics are important in 

modeling or understanding the electrical characteristic behaviors. In these appendixes, 

we show several physical characteristics in the form of equation expressions or graphs. 

 

Appendix A. Conversion between Resistivity and Impurity 

Concentration for Boron- and Phosphorus-Doped Silicon 

 

It is important to select the resistivity ρ of a semiconductor for starting material as 

well as for semiconductor devices. The resistivity of a wafer is determined by the 

impurity concentration, and it can be modified during device processing by impurity 

doping like diffusion or ion implantation. 

Conversion between resistivity and impurity concentration for boron- and 

phosphorus-doped silicon can be calculated with the following empirical formula. For 

boron-doped silicon, the impurity concentration and the resistivity is 

 

Eq. A.1 
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where ρ is the resistivity in Ω.cm and NB the boron concentration in cm-3. For 

phosphorus-doped silicon, the impurity concentration is 

 

Eq. A.3 

Eq. A.4 

Eq. A.5 

where A0 = -3.1083, A1 = -3.2626, A2 = -1.2196, A3 = -0.13923, B1 = 1.0265, B2 = 

0.38755, and B3 = 0.041833. The resistivity is 

 

Eq. A.6 

Eq. A.7 

Eq. A.8 

where C0 = -3.0769, C1 = 2.2108, C2 = -0.62272, C3 = 0.057501, D1 = -0.68157, D2 = 

0.19833, and D3 = -0.018376. Finally, the resistivity plots as a function of impurity 

concentration are showed in Fig. A.1. From the figure, the linearity deviations of ρ-N in 

high doped region are known as the effect of coulomb scattering. 
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Fig. A.1 Resistivity as a function of impurity concentration for p-type 
(boron-doped) and n-type (phosphorus-doped) silicon at 296 K. Linearity 
deviations from impurity of 1017 are known as coulomb scattering effects. 

 

Appendix B. Temperature Dependent of Energy Band gap 

 

The energy band gap of semiconductors is a fundamental parameter to explain 

carrier behaviors and electrical properties. The temperature dependent of band gaps can 

be expressed with universal function given as below. 
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Eq. A.9 

where, Eg0, α, and β are given in the following table. 

Table A-1 Eg0, αααα, and ββββ for Si, Ge, and GaAs 

 

 

 

The band gaps of Si, Ge, and GaAs over temperature up to 900K are shown in Fig. A.2. 

At room temperature, the band gap values of high-purity semiconductors are 1.12 eV 

for Si, 0.66 eV for Ge, and 1.42 eV for GaAs. For highly-doped semiconductors, these 

values become smaller. 

 

 

 

 

 

 

 

 

 

 

 

Fig. A.2 Energy band gaps as a function of temperature for Si, Ge, and GaAs. High 
purity silicon has 1.12 eV at room temperature. 
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Appendix C. Temperature Dependent of Intrinsic Carrier Density for 

Silicon 

 

The intrinsic carrier concentration ni is an important parameter needed for 

modeling semiconductor properties and devices. An accurate measurement of ni for 

silicon has been refine for temperature range over 77-400K. Empirical expression of ni 

for Si is given by, 

Eq. A.10 

The plots of this expression at temperature range of 200-400K are shown in Fig. A.3. At 

300K, Si intrinsic carrier concentration ni can be found of 1.0×1010 cm-3. 

 

 

 

 

 

 

 

 

 

 

 

Fig. A.3 The plotted intrinsic carrier concentration as a function of the 
temperature for Silicon. The intrinsic carrier concentration is of about two times in 
every ten degrees of the increasing temperature. 
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Appendix D. Impurity Concentration Dependent of Majority Carrier 

Mobility for Boron- and Phosphorus-Doped Silicon 

 

Drift mobility is an essential parameter defining the current and speed of unipolar 

devices, where majority carriers are dominant in carrier transport. When an electric field 

is applied to a material, carriers are accelerated and acquire a drift velocity 

superimposed upon random thermal motion. For low-doped semiconductors, the drift 

mobilities are mainly limited by carrier collisions with silicon lattice or acoustic 

phonons. While for highly-doped semiconductors, collisions with ionized impurity 

atoms through coulomb interaction become more important in decreasing the mobilities. 

For silicon at room temperature, the ionized impurity concentration dependent of 

electron and hole mobilities can be expressed with the following empirical expressions. 

 

 

Eq. A.11 

 

Eq. A.12 

where NA and ND are the ionized impurity atoms. The plot these expressions can be 

found in Fig. A.4. The electron mobility is approximately three times the hole mobility, 

since the effective mass of electrons in conduction band is much lower than that of the 

holes in valence band. 
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Fig. A.4 Electron and hole mobilities as a function of impurity concentration for 
silicon at 300 K.  

 

Appendix E. Impurity Concentration Dependent of Minority Carrier 

Mobility, Lifetime, and Diffusion Length for Silicon 

 

The minority-carrier mobility µ, lifetime τ and diffusion length L are important in 

modeling the electrical behavior of p-n junction. The empirical equations for 

minority-carrier electron and minority-carrier holes are given as the following. 

 

Eq. A.13 
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Eq. A.14 

 

Eq. A.15 

 

Eq. A.16 

where NA and ND are the ionized impurity atoms. The diffusion lengths are calculated 

from the mobilities and lifetimes using the relation L = (kTµτ/q)1/2. The minority-carrier 

mobilities, lifetime, and diffusion lengths as a function impurity concentration are 

shown in Fig. A.5, A.6, and A.7, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Fig. A.5 Minority-carrier mobilities as a function of impurity concentration. 
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Fig. A.6 Minority-carrier lifetimes as a function of impurity concentration. 

 

 

 

 

 

 

 

 

 

 

 

Fig. A.7 Diffusion lengths as a function of impurity concentration. 
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