High-Performance Si Nanowire FET with a Semi Gate-Around Structure Suitable for Integration

Soshi Sato¹, Hideyuki Kamimura¹, Hideaki Arai¹, Kuniyuki Kakushima², Parhat Ahmet¹, Kenji Ohmori³, Keisaku Yamada³ and Hiroshi Iwai¹

> ¹FRC, ²IGSSE, Tokyo Institute of Technology ³NRL, Waseda University

<u>Outline</u>

Introduction of SiNW FET Purpose of this Study Device Fabrication Process Electrical Characterization $\bullet I_d V_g I_d V_d$ Curves Carrier Mobility Performance Assessment of Si NW FET Conclusion

Introduction of Si Nanowire FET

Effective electrostatic control of 1-D channel due to the gate all-around structure. Low I_{off} can be achieved.

Gate all-around SiNW FETs

Dedicated process for SiNW FET is necessary

SiNW FET fabrication using conventional CMOS process

Semi Gate-Around Structure

• Si NW channel <u>connected with substrate (BOX</u>

Layer) so as not to be released.

Suitable for application to industrial manufacturing

Fabrication of a semi-gate around SiNW
FET using conventional CMOS processing

Demonstration and analysis of FET performance

Outlook of semi-gate around SiNW FET for future CMOS devices

Si NW FET Fabrication

Starting wafer: 300mm SOI (61 / 145 nm)

S/D & Fin Patterning

Sacrificial Oxidation & Oxide Removal DryOx 1000°C for 1 hour (not completely released from BOX layer)

 Nanowire Sidewall Formation (Oxide Support Protector)
Gate Oxidation & Poly-Si Deposition
Ion Implantation (As) into gate Poly-Si
Gate Lithography & RIE Etching
Gate Sidewall Formation & S/D Implantation
Ni SALISIDE Process (Ni 9nm / TiN 10nm)
Standard Recipes for CMOS Processes

Images of Fabricated SiNW FET

Fabricated Samples

 I_dV_g and I_dV_d Characteristics

Fairly nice FET operation with $I_{on}/I_{off} \sim 10^7$ Large I_{on} of 49µA per wire was achieved

On Current of Si NW FET

Effective electron mobility of SiNW FET

High effective mobility can be achieved with semi-gate around SiNW FET

Design of Channel Shape for High On-Current

The Si NW FET in this work is the surface channel device.

Larger I_{on} with longer peripheral length.
Higher aspect ratio has advantage for large I_{ON}
The narrowest Si NW FET is the most efficient considering printed area 12

Moreover, further performance can be expected with L_g scaling 13

Expected On-current Evaluation with SiNW FET

 I_{on} should be compared based on unit width.

Estimation of the Number of Si NWs in the Unit Width

	MPU/ASIC M1 H.P. [nm]	The number of NWs
2010	45	11
2014	28	17
2016	22	21
2018	18	23

= Half Pitch x 2

The number of NWs is calculated using H.P. of MPU/ASIC M1 pattern

for future FET structure with high I_{ON} 16

Conclusion

Semi gate-around SiNW FET with conventional CMOS process has been successfully fabricated and performed I_{on}/I_{off}~10⁷ and I_{ON} of 49.6µA.

From peripheral normalization, surface channel are formed with high mobility.

On-current evaluation reveals high potential of SiNW FET to be one of the candidates for future CMOS structure.

Acknowledgement

This work is supported by METI, Japan

The authors thank Front End Process Program and Aska II with Selete for device fabrication