Selection of Rare Earth Silicate with SrO Capping for EOT Scaling below 0.5 nm

K. Kakushima, K. Okamoto*, T. Koyanagi*, K. Tachi*, M. Kouda*, T. Kawanago*, J. Song*, P. Ahmet*, K. Tsutsui, N. Sugii, T. Hattori*, H. Iwai*

Interdisciplinary Graduate School of Science and Engineering, *Frontier Research Center Tokyo Institute of Technology

Continuous scaling in gate dielectrics

SiO₂ interfacial layer inserted or re-grown for Year

- recovery of degraded mobility
- interface state, reliability (TDDB, BTI), etc.
- SiO₂-IL free structure (direct contact of high-k/Si) is required for EOT=0.5nm

EOT scaling is expected down to 0.5 nm in ITRS

High-k gate dielectrics without SiO_x IL

M. Takahashi, IEDM(2007) J. Hauang, VLSI symp.(2009) K. Choi, VLSI symp.(2009)

Special process and metal selection controlling oxygen atoms against SiO_x -IL formation

 La_2SiO_5 , $La_2Si_2O_7$, $La_{9.33}Si_6O_{26}$, $La_{10}(SiO_4)_6O_3$, etc.

 La_2O_3 can achieve a SiO_x-IL free structure by forming La-silicate at the interface

Silicate reaction at La₂O₃/Si interface

1. Reactivity with Si substrate

⊿*G* ~ -100kJ/mol

2. Stable silicate phases

Reported La-silicate: La_2SiO_5 , $La_{10}(SiO_4)_6O_3$, $La_{9.33}Si_6O_{26}$, $La_2Si_2O_7$, etc.

 $LaO_{1.5}:SiO_2$ from 1:1 to 1:2

Prevent the excess silicate reaction

- 1. proper metal selection: ECS Trans. 11 (4), 319 (2007)
- 2. short period annealing: Appl. Phys. Lett. 90, 102908 (2007)
- 3. other RE-silicates for interfacial layer (this work)

Purpose of this work

1. Material selection of RE-silicate as an interfacial layer for SiO_x -free gate stack

Selected RE-oxides: La₂O₃ (k~23), CeO_x (k~32), PrO_x (k~32)

2. SrO capping effect for further EOT scaling

Selection of RE-silicate for interfacial layer

CV curves with La, Ce, Pr-silicates

XPS measurement of La, Ce, Pr-silicates

Material selection for EOT=0.5nm

Oxide	Dielectric constant	E_g (eV)
La_2O_3	~24	5.5
CeO _x	~32	3.2~3.7
PrO _x	~32	3.2~4.5
La-silicate	~9	~ 6.4
Ce-silicate	~21	~ 6.1
Pr-silicate	~10	~ 6.5

Ref: S Sathyamurthy, Nanotech 16 1960 (2005) HJ Osten et al., SSE 47 2161 (2003), A. Sakai, APL 85(22) 5322 (2004), O. Seifarth, J Vac Sci Tech B 27 271 (2009)

Combination of La_2O_3 ($E_g=5.5eV$) and Ce-silicate (k~21) can be a good candidate for scaled gate oxide

La₂O₃ with RE-silicate interfacial layer

Fabrication process HF-last Si wafer La_2O_3 , CeO_x , PrO_x depo. (300°C) La_2O_3 (1nm) deposition SrO (1nm) deposition (option) Sputter tungsten depo. (60nm) Gate lithography, etching Annealing at 500°C for 30min

RE-silicate IL for EOT=0.5 nm

Further EOT reduction can be achieved with SrO capping

AR-XPS analysis of SrO/La₂O₃/CeO_x/nSi

Sr atom diffusion to enhance the k-value of La-silicate

NFET characterization

La_2O_3/Ce -silicate nFET SrO capped La_2O_3/Ce -silicate nFET

NFET fabrication process

Al wiring

AI back contact

Source/Drain pre-formed Substrate

SPM, HF-last Treatment

High-k e-beam evaporation HF-last Si @ 300°C under ~10⁻⁶ Pa

Metal deposition by *in situ* RF-sputtering Metal dry etching

Post Metallization Annealing (PMA)

Contact hole formation

Al wiring for S/D Back side contact formation (Al)

Output characteristics of nFET

Nice FET operations were confirmed with EOT<0.5nm SrO capping shifts the V_{th} from -0.38 to -0.54 V

Transconductance of nFET

Reduction in g_m indicates the degradation in mobility

Effective mobility with SrO capping

Degraded mobility was observed with SrO capping Possibly due to Sr atoms diffusion down to Si interface

Summary of high field μ_{eff} on EOT

Our data follows the mobility trend in scaled EOT

Gate leakage current performance

SrO capping can reduce the gate leakage current

A proposed guideline for material selection in EOT=0.5nm

Conclusions

• Ce-silicate interfacial layer is suitable for scaled gate dielectric

k~20, E_g =6.1 eV, D_{it} ~10¹¹ cm⁻²/eV

- An EOT=0.51 nm can be obtained with by the combination of La₂O₃/Ce-silicate
- SrO capping can further reduce the EOT at the cost of μ_{eff}
- A guideline for material selection for EOT scaling below 0.5nm is proposed

Acknowledgment

This work was supported by NEDO.

The synchrotron radiation experiments were performed at the BL47XU in the SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2007A0005).

J. Robertson, Solid-State Electronics 49 (2005) 283-293

TEM image of W/SrO(1nm)/CeO_x(1nm)/Si

The presence of Sr atoms are confirmed in Ce-silicate layer