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Abstract 
3D-staked gate-all-around Silicon Nanowire transistor (SNWT) 

with high-k/metal gate stack is successfully demonstrated and shows 
excellent transport properties. A high drive current per wire of 39µA 
for nFET was obtained. The carrier mobility degradation due to the 
high-k was not observed. However, low-temperature measurements 
show that the surface roughness limited mobility, which significantly 
affects the gate leakage, is lower than in FD-FET and FinFET, while 
phonon limited mobility remains unchanged. 

Introduction 
Gate-All-Around (GAA) silicon nanowire transistors (SNWTs) are 

most promising candidates for future CMOS due to reduced 
short-channel effects [1]. Simulation results indicate that the gate 
lengths in these devices can be scaled down to as small a dimension as 
the NW diameter itself [2]. To increase the drive current per device, 
for high density of integration, vertical stacking of NWs is very 
efficient thanks to increase in the available silicon surface per device 
[3-5]. In addition, the use of a metal gate and a high-k gate dielectric is 
also required to reduce the gate leakage, with a given equivalent oxide 
thickness (EOT), for further aggressive scaling [6].  

In this paper, 3D-staked GAA SNWTs with high-k/metal gate stack 
are investigated. In particular, we demonstrate the impact of nanowire 
width on the carrier mobility limiting factors and gate leakage, using 
room and low temperature measurements. 

Device Fabrication 
Fig.1 shows a cross-sectional TEM image and a top view SEM 

image of 3D-stacked SNWTs. First, Reduced Pressure-Chemical 
Vapor Deposition (RP-CVD) was used to epitaxially grow (25 nm-Si 
/25 nm-SiGe)x3 superlattice on (100)SOI wafers in order to make 
vertically stacked wires.  NWs are formed by using a hybrid 
DUV/e-beam lithography and a selective dry plasma etching [4].After 
chemical cleaning of the channel surface, a HfO2 (3 nm) / TiN (10 nm) 
/ Poly-Si gate stack was deposited. Fig.2 shows the cross sectional 
TEM images of NWs with various size.  We can also confirm that a 
lower-k SiO2-like interfacial layer (TIL: 1.5~2 nm) grows due to 
thermal process in Fig.2. Finally, the EOT, which is extracted from 
the NCSU CVC model and the CV curve normalized by the estimated 
effective surface area, is 2.6 nm. The minimum width of the wire is 10 
nm as shown in Fig.2 (a). 

Electrical Results 
Fig.3 shows I-V curves of 15 nm 3D-stacked GAA SNWTs with 

LG=120 nm. The currents are normalized by top view NW width. 
ID-VG plot exhibits near-ideal S.S. (62mV/dec for both n- and p-FET) 
and low DIBL (17mV/V for both n- and p-FETs). The off-currents 
IOFF are low with ION/IOFF ratio >106. On-currents ION at 
VDD=VG=1.2V of 5.7mA/µm and 3.9mA/µm are obtained for n- and 
p-FETs, respectively. These extremely high values are due to the 
vertical stacked NWs (3 stacked wires) and the normalization by the 
top view width (15 nm in diameter). If ION is normalized by the 
effective width, the values are 465µA/µm for nFET and 313µA/µm 
for pFET. To evaluate the carrier transport property, ION per wire at 
VG-VTH=0.9V is plotted in Fig.4. In comparison with reported values 
[7-12], ION of 39µA/wire for nFET with LG=120 nm is very high. 

Fig.5 shows IOFF/ION characteristics with various LG from 120 nm to 
640 nm. Compared with FinFETs, the IOFF of NWs are suppressed. 
Although HfO2 was directly deposited on Si surface, Subthreshold 
Slope (S.S.) shows near ideal value in the whole NWs width range as 
shown in Fig. 6. Low interfacial trap density might be attributed to the 
SiO2 interfacial layer, which was grown during thermal steps [13].  
The effective mobility of SNWTs is extracted by using split C-V 
method with two different gate lengths to remove the overlap 
capacitance as shown in Fig.7 and 8. In pFET, the mobility for W > 15 
nm is higher than (100) universal mobility at high Ninv. This striking 
feature may be attributed to two potential reasons; (i) SiGe layers or 
TiN metal gate induce compressive stress in the silicon channel [14, 
15] and (ii) (110) side surface enables better mobility for pFETs. For 
narrower nanowire, it is clear that the mobilities of both n and pFET 
are degraded. The carrier mobility degradations due to the high-k is 
not observed by comparison with SiO2 and planar bulk FET 
references [16-25] as shown in Fig.11 and 12, while the gate leakage 
current is not suppressed ( Fig.13 (a)). It is probable that the relatively 
high leakage is due to the electric field concentration at the corner of 
quadrangular Si.  In addition, the gate leakage increases with 
decreasing nanowire size as shown in Fig.13 (b). This may be also 
attributed to that the subband energy increases and the carriers 
approach the gate oxide interface, thereby increasing the tunneling 
probability [29].  Fig.14 and 15 show temperature dependence of 
mobility. By assuming µ(T)-1= µph

-1+µsr
-1 at Ninv=1x1013cm-2 (T: 

temperature, µph: phonon-limited mobility, µsr: surface- roughness 
limited mobility) and µsr=µ(10K), µph of SNWT is the same as in 
FinFET and FD-FET, while µsr is lower. This high surface roughness 
also significantly affects the gate leakage [30]. 

Conclusion 
The 3D-staked GAA SNWTs with high-k /metal gate stack have 

been studied. The mobility for both electron and hole decreases with 
decreasing NW size, while specific mobility degradation due to 
high-k is not observed. In addition, near ideal S.S. is obtained in spite 
of the use of high-k /metal gate. From these investigations, it appears 
that the performance of GAA SNWTs will be even enhanced by using 
further aggressive EOT scaling. However, their surface roughness 
must be controlled. 
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Fig. 1 3D-stacked NWs. (a) Cross 
sectional TEM image. (b) Top view 
SEM image.  

Fig.2 Cross sectional TEM images of 3D-stacked NWs with HfO2/TiN gate stack. (a)  Rectangular NW with Si 
Width (W)/Height (H)=10nm/15nm. (b) Square NW with W/H=15nm/15nm. (c) Rectangular NW with 
W/H=30nm/15nm. 

   
Fig.3 ID-VG characteristics of nFET 
and pFET NWs of 15nm width. 
LG=120nm. 

Fig.4 ION current per wire. The 
values (in nm) in brackets are the 
diameters. 

Fig.5 ION/IOFF characteristics of nFET and pFET. LG=120~640nm. 
Compared with FinFETs, the IOFF of NWs are suppressed. 

  
Fig.6 S.S. trend as a function of NW 
width.  

Fig.7 Cgc extraction. The overlap capacitance is 
eliminated by using two different gate lengths. 

Fig.8 (a) Electron and (b) hole mobility characteristics of 
NWs. LG=570nm. 

  
Fig. 11 Electron mobility at Ninv= 
5x1012cm-2 as a function of NW width in 
comparison with SiO2 SNWTs. 

Fig.12 Comparison of peak electron 
mobility in NWs and planar bulk FETs. 

Fig13. Gate leakage current density of SNWT with HfO2/TiN gate 
stack. (a) Comparison with planar bulk FETs. (b) NW width 
dependence. 

Fig.15 Extraction of surface 
roughness and phonon limited 
mobility by Matthienessen’s 
rule. 
W/H=15nm/19nm for nSNWT. 
W/H=15nm/160nm for nFin FET.
W/TSi=10µm/10nm for nFDFET.  

 
Fig.14 Temperature dependence of (a) electron and (b) hole mobility of SNWT 
and FinFET.  
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