Experimental Study for High Effective Mobility with directly deposited HfO$_2$/La$_2$O$_3$ MOSFET

T. Kawanago1,*, J. Song1, K. Kakushima2, P. Ahmet1, K. Tsutsui2, N. Sugii2, T. Hattori1, H. Iwai1

1Frontier Research Center, Tokyo Institute of Technology

2Interdisciplinary Graduate School of Sci, and Eng., Tokyo Institute of Technology

4259, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

*Tel: +81-45-924-5847, e-mail: kawanago.t.ab@m.titech.ac.jp

Abstract

We experimentally examine the effective mobility in nMOSFETs with La$_2$O$_3$ gate dielectrics without SiO$_x$-based interfacial layer. The reduced mobility is mainly caused by fixed charges in High-k gate dielectrics and the contribution of the interface state density is approximately 30% at $N_s = 5 \times 10^{11}$ cm$^{-2}$ in the low 10^{11} cm$^{-2}$eV$^{-1}$ order. It is considered that one of the effective methods for improving mobility is to utilize La-Silicate layer formed by high temperature annealing. However, there essentially exists trade-off relationship between high temperature annealing and small EOT.

Keyword: High-k; effective mobility; direct contact;

1. Introduction

Reduced mobility has been still one of the most important issues in high-k gate MOSFETs [1]. Although SiO$_x$-based interfacial layer is typically inserted or regrown to suppress the mobility reduction in MOSFETs with high-k gate dielectrics [2], there exists a limitation for further scaling. It is required that high-k gate dielectrics should be directly in contact with Si substrate without any SiO$_x$ interfacial layer [3].

We focus on La$_2$O$_3$ as a gate dielectric to achieve a structure without any SiO$_x$ interfacial layer, and La-Silicate layer is formed after annealing instead of SiO$_x$ interfacial layer [4]. One of the concerns for direct contact high-k on Si is relatively high interface state density, D_{it}, and the issue is that to what extent the D_{it} affects to the effective mobility. In this study, we experimentally investigate the contribution of D_{it} on the effective mobility with directly formed high-k/Si
MOSFETs. In addition, we also provide a guideline for improving mobility without SiO$_x$ interfacial layer.

2. Experiment

High-k gate dielectrics (La$_2$O$_3$ and HfO$_2$) were deposited on a HF-last source and drain pre-formed p-Si wafer ($N_{sub} = 3 \times 10^{16}cm^{-3}$). La$_2O_3$ film, followed by HfO$_2$ one was deposited by e-beam evaporation in an ultra-high vacuum chamber. Tungsten (W) gate electrode was formed by RF sputtering without breaking ultra-high vacuum to avoid any contamination. The samples were post-metallization annealed in F.G. ambient (H$_2$:N$_2$=3%:97%) at 500 °C for 30min. Al was deposited on the source/drain region and back side of the substrate as a contact. Effective mobility was measured by Split-CV method [5]. The gate length and the gate width of the measured devices were 2.5 and 50 µm, respectively. The interface state density was measured by charge pumping method [6].

3. Results and Discussion

Fig. 1 shows the EOT dependence of (a) low field mobility and (b) Dit of HfO$_2$/La$_2$O$_3$ stacked FET where La$_2$O$_3$ thickness is fixed to 1 and 2 nm with various HfO$_2$ thicknesses. The low field mobility is reduced at small EOT, moreover, the mobility observed for 2nm-thick La$_2$O$_3$ is lower than that of La$_2$O$_3$ 1nm indicating larger Dit or fixed charge [2]. The Dit increases with decreasing EOT. In order to evaluate whether the reduced mobility is mainly caused by Dit or not, we intentionally increase the Dit by applying an electrical stress of -2 V to the gate to experimentally estimate the contribution of the Dit on the effective mobility [7]. Fig. 2 (a) shows the surface carrier density, N_s, dependence of effective mobility before and after the electrical stress. After the electrical stress, mobility degradation is clearly observed. We confirmed an increase of ΔDit=2x1011cm$^{-2}$eV$^{-1}$ by charge pumping measurement. Note that no hysteresis in gate-channel capacitance, C_{gc} - V_g and I_d - V_g characteristics was observed which means the generation of bulk traps in High-k dielectrics is negligibly small after the electrical stress. Fig. 2 (b) shows the
comparison of μ_{eff}-N$_s$ characteristics between EOT of 2.24 and 1.76 nm for 1nm-thick La$_2$O$_3$ nMOSFETs. Matthiessen’s rule,

$$1/\mu_{\text{it}} = 1/\mu_{\text{After-Stress}} + 1/\mu_{\text{Initial}},$$

$$1/\mu_{\text{EOT}} = 1/\mu_A + 1/\mu_B,$$

is utilized in order to extract the contribution of $\Delta D_{it} = 2 \times 10^{11} \text{cm}^{-2} \text{eV}^{-1}$ on the effective mobility. Fig. 3 shows the N_s dependence of extracted mobility. The μ_{it} and μ_{EOT} at $N_s = 5 \times 10^{11} \text{cm}^{-2}$ are evaluated to be about 2000 and 600 cm^2/Vsec, respectively. The contribution of $\Delta D_{it} = 2 \times 10^{11} \text{cm}^{-2} \text{eV}^{-1}$ on the effective mobility is approximately 30% at $N_s = 5 \times 10^{11} \text{cm}^{-2}$. Thus, the effective mobility is mainly reduced by Coulomb charges in high-k gate dielectrics and the impact of D_{it} is relatively small.

As previously mentioned, the low field mobility is sensitive to La$_2$O$_3$ thickness. In order to investigate the effect of La$_2$O$_3$ thickness on the effective mobility more precisely, we fabricated samples which have the same EOT but with different La$_2$O$_3$ and HfO$_2$ physical thickness. Fig. 4 shows the electrical characteristics of MOS Capacitors and MOSFETs for various gate stacks. Humps to C-V curve was found to decrease by decreasing the La$_2$O$_3$ thickness shown in Fig. 4. (a). Subthreshold slop is increased while increasing the La$_2$O$_3$ thickness shown in Fig. 4. (b). Fig. 4. (a) and (b) indicate that thinning the La$_2$O$_3$ layer improves the amount of trap states in La$_2$O$_3$. Fig. 4. (c) shows the effective mobility for various gate stacks. It is clearly observed the effective mobility with 2nm-thick La$_2$O$_3$ is reduced in both low and high effective field. This result suggests that phonon or surface roughness scattering is enhanced at 2nm-thick La$_2$O$_3$ [2]. The impact of D_{it} on the effective mobility is relatively small, as discussed previously. In order to investigate the trap charges in La$_2$O$_3$, we performed the variable amplitude charge pumping measurement [6]. Fig. 5 shows the charge pumping measurement by varying the V_{amp}. I$_{cp}$ increase with increasing La$_2$O$_3$ thickness, which means the large amount of bulk traps exist in thick La$_2$O$_3$ layer. Therefore, the trap charges near the substrate bring about the severe mobility degradation. Since the large amount of trap charges still exists in La$_2$O$_3$, it is considered that high temperature annealing will be effective in
reducing trap charges. However, there are essentially trade-off relationship between high temperature annealing and small EOT.

4. Conclusion

We experimentally examined the origin of decrease in effective mobility with direct contacted High-k on Si substrate. The effective mobility decreases mainly by the fixed charges in high-k gate dielectrics even if without any SiOₓ interfacial layer. It was clarified that the effective mobility is severely degraded with increasing La₂O₃ thickness. Our experimental results suggest that La-silicate film will be utilized to improve the effective mobility without SiOₓ interfacial layer. It is considered that La-silicate formed by high temperature annealing is to improve the performance of MOSFET. However, there are basically trade-off relationship between small EOT and high annealing temperature.

Acknowledgements

This study was partially supported by the Japan Society for the Promotion of Science (JSPS).

References

Figure Captions

Fig. 1. EOT dependence of (a) low field mobility and (b) interface state density.

Fig. 2. Surface carrier density, Ns, dependence of Effective mobility. (a) Comparison of effective mobility between before and after the electrical stress and (b) Effective mobility as a function of EOT. La$_2$O$_3$ thickness is fixed to 1 nm with varying HfO$_2$ thicknesses.

Fig. 3. Ns dependence of μ_{it} and μ_{EOT} in nMOSFETs. μ_{it} and μ_{EOT} are extracted by Matthiessen’s rule.

Fig. 4. Electrical characteristics of MOSCapacitors and MOSFETs for various gate stacks. (a) C-V characteristics of MOSCapacitors. (b) Subthreshold slop as a function of La$_2$O$_3$ thickness. (c) Effective mobility versus effective field.

Fig. 5. I_{cp} as a function of gate pulse amplitude.