Experimental Study for High Effective Mobility with directly deposited HfO₂/La₂O₃ MOSFET

T. Kawanago^{1,*}, J. Song¹, K. Kakushima², P. Ahmet¹, K. Tsutsui², N. Sugii², T. Hattori¹, H. Iwai¹

¹Frontierl Research Center, Tokyo Institute of Technology

²Interdiscipinary Graduate School of Sci, and Eng., Tokyo Institute of Technology

4259, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

^{*}Tel: +81-45-924-5847, e-mail: kawanago.t.ab@m.titech.ac.jp

Abstract

We experimentally examine the effective mobility in nMOSFETs with La₂O₃ gate dielectrics without SiO_x-based interfacial layer. The reduced mobility is mainly caused by fixed charges in High-k gate dielectrics and the contribution of the interface state density is approximately 30% at $N_s = 5 \times 10^{11} \text{cm}^{-2}$ in the low $10^{11} \text{cm}^{-2} \text{eV}^{-1}$ order. It is considered that one of the effective methods for improving mobility is to utilize La-Silicate layer formed by high temperature annealing. However, there essentially exists trade-off relationship between high temperature annealing and small EOT. **Keyword**; High-k; effective mobility; direct contact;

1. Introduction

Reduced mobility has been still one of the most important issues in high-k gate MOSFETs [1]. Although SiO_x -based interfacial layer is typically inserted or regrown to suppress the mobility reduction in MOSFETs with high-k gate dielectrics [2], there exists a limitation for further scaling. It is required that high-k gate dielectrics should be directly in contact with Si substrate without any SiO_x interfacial layer [3].

We focus on La_2O_3 as a gate dielectric to achieve a structure without any SiO_x interfacial layer, and La-Silicate layer is formed after annealing instead of SiO_x interfacial layer [4]. One of the concerns for direct contact high-k on Si is relatively high interface state density, D_{it}, and the issue is that to what extent the D_{it} affects to the effective mobility. In this study, we experimentally investigate the contribution of D_{it} on the effective mobility with directly formed high-k/Si MOSFETs. In addition, we also provide a guidline for improving mobility without SiO_x interfacial layer.

2. Experiment

High-k gate dielectrics (La₂O₃ and HfO₂) were deposited on a HF-last source and drain pre-formed p-Si wafer ($N_{sub} = 3x10^{16}$ cm⁻³). La₂O₃ film, followed by HfO₂ one was deposited by e-beam evaporation in an ultra-high vacuum chamber. Tungsten (W) gate electrode was formed by RF sputtering without breaking ultra-high vacuum to avoid any contamination. The samples were post-metallization annealed in F.G. ambient (H₂:N₂=3%:97%) at 500 °C for 30min. Al was deposited on the source/drain region and back side of the substrate as a contact. Effective mobility was measured by Split-CV method [5]. The gate length and the gate width of the measured devices were 2.5 and 50 µm, respectively. The interface state density was measured by charge pumping method [6].

3. Results and Discussion

Fig. 1 shows the EOT dependence of (**a**) low field mobility and (**b**) D_{it} of HfO₂/La₂O₃ stacked FET where La₂O₃ thickness is fixed to 1 and 2 nm with various HfO₂ thicknesses. The low field mobility is reduced at small EOT, moreover, the mobility observed for 2nm-thick La₂O₃ is lower than that of La₂O₃ 1nm indicating larger D_{it} or fixed charge [2]. The D_{it} increases with decreasing EOT. In order to evaluate whether the reduced mobility is mainly caused by D_{it} or not, we intentionally increase the D_{it} by applying an electrical stress of -2 V to the gate to experimentally estimate the contribution of the D_{it} on the effective mobility [7]. Fig. 2 (a) shows the surface carrier density, N_s, dependence of effective mobility before and after the electrical stress. After the electrical stress, mobility degradation is clearly observed. We confirmed an increase of $\Delta D_{it}=2x10^{11}$ cm⁻²eV⁻¹ by charge pumping measurement. Note that no hysteresis in gate-channel capacitance, C_{gc} - V_g and I_d - V_g characteristics was observed which means the generation of bulk traps in High-k dielectrics is negligibly small after the electrical stress. Fig. 2 (b) shows the comparison of μ_{eff} -N_s characteristics between EOT of 2.24 and 1.76 nm for 1nm-thick La₂O₃ nMOSFETs. Matthiessen's rule,

 $1/\mu_{it}=1/\mu_{After-Stress}-1/\mu_{Initial}$,

 $1/\mu_{EOT}=1/\mu_{A}-1/\mu_{B}$,

is utilized in order to extract the contribution of $\Delta D_{it}=2x10^{11} \text{cm}^{-2}\text{eV}^{-1}$ on the effective mobility. **Fig. 3** shows the N_s dependence of extracted mobility. The μ_{it} and μ_{EOT} at N_s = $5x10^{11} \text{cm}^{-2}$ are evaluated to be about 2000 and 600 cm²/Vsec, respectively. The contribution of $\Delta D_{it}=2x10^{11} \text{cm}^{-2}\text{eV}^{-1}$ on the effective mobility is approximately 30% at N_s = $5x10^{11} \text{cm}^{-2}$. Thus, the effective mobility is mainly reduced by Coulomb charges in high-k gate dielectrics and the impact of D_{it} is relatively small.

As previously mentioned, the low field mobility is sensitive to La₂O₃ thickness. In order to investigate the effect of La₂O₃ thickness on the effective mobility more precisely, we fabricated samples which have the same EOT but with different La₂O₃ and HfO₂ physical thickness. Fig. 4 shows the electrical characteristics of MOS Capacitors and MOSFETs for various gate stacks. Humps to C-V curve was found to decrease by decreasing the La₂O₃ thickness shown in Fig. 4. (a). Subthreshold slop is increased while increasing the La₂O₃ thickness shown in Fig. 4. (b). Fig. 4. (a) and (b) indicate that thinning the La_2O_3 layer improves the amount of trap states in La_2O_3 . Fig. 4. (c) shows the effective mobility for various gate stacks. It is clearly observed the effective mobility with 2nm-thick La_2O_3 is reduced in both low and high effective field. This result suggests that phonon or surface roughness scattering is enhanced at 2nm-thick La₂O₃ [2]. The impact of D_{it} on the effective mobility is relatively small, as discussed previously. In order to investigate the trap charges in La_2O_3 , we performed the variable amplitude charge pumping measurement [6]. Fig. 5 shows the charge pumping measurement by varying the V_{amp} . I_{cp} increase with increasing La_2O_3 thickness, which means the large amount of bulk traps exist in thick La₂O₃ layer. Therefore, the trap charges near the substrate bring about the severe mobility degradation. Since the large amount of trap charges still exists in La₂O₃, it is considered that high temperature annealing will be effective in

reducing trap charges. However, there are essentially trade-off relationship between high temperature annealing and small EOT.

4. Conclusion

We experimentally examined the origin of decrease in effective mobility with direct contacted High-k on Si substrate. The effective mobility decreases mainly by the fixed charges in high-k gate dielectrics even if without any SiO_x interfacial layer. It was clarified that the effective mobility is severely degraded with increasing La_2O_3 thickness. Our experimental results suggest that La-silicate film will be utilized to improve the effective mobility without SiO_x interfacial layer. It is considered that La-silicate formed by high temperature annealing is to improve the performance of MOSFET. However, there are basically trade-off relationship between small EOT and high annealing temperature.

Acknowledgements

This study was partially supported by the Japan Society for the Promotion of Science (JSPS).

References

[1] R. Iijima, M. Takayanagi, T. Yamaguchi, M. Koyama, and A. Nishiyama, IEDM Tech. Dig, p.421 (2005)

[2] S. Saito, D. Hisamoto, S. Kimura, and M. Hiratani, IEDM Tech. Dig, p.797 (2003)

[3] M. Takahashi, A. Ogawa, A. Hirano, Y. Kamimuta, Y. Watanabe, K. Iwamoto, S. Migita, N. Yasuda, H. Ota, T. Nabatame, and A. Toriumi, IEDM Tech. Dig, p.523 (2007)

[4] K. Kakushima, K. Tachi, M. Adachi, K. Okamoto, S. Sato, J. Song, T. Kawanago, P. Ahmet, K.

Tsutsui, N. Sugii, T. Hattori, and H. Iwai, Proc. ESSDERC, p. 126 (2008)

[5] J. R. Hauser, IEEE Trans. Electron Devices 43 p. 1981 (1996)

[6] G. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Keersmaecker, IEEE Trans. Electron Devices 31 p. 42 (1984)

[7] K. Tatsumura, M. Goto, S. Kawanaka, K. Nakajima, T. Shimizu, T. Ishihara, and M. Koyama,

IEDM Tech. Dig, p.349 (2007)

[8] S. Takagi, A. Toriumi, M. Iwase, and H. Tango, IEEE Trans. Electron Devices 41 p. 2357 (1994)Figure Captions

Fig. 1. EOT dependence of (a) low field mobility and (b) interface state density.

Fig. 2. Surface carrier density, Ns, dependence of Effective mobility. (**a**) Comparison of effective mobility between before and after the electrical stress and (**b**) Effective mobility as a function of EOT. La₂O₃ thickness is fixed to 1 nm with varying HfO₂ thicknesses.

Fig. 3. N_s dependence of μ_{it} and μ_{EOT} in nMOSFETs. μ_{it} and μ_{EOT} are extracted by Matthiessen's rule.

Fig. 4. Electrical characteristics of MOSCapacitors and MOSFETs for various gate stacks. (**a**) C-V characteristics of MOSCapacitors. (**b**) Subthreshold slop as a function of La₂O₃ thickness. (**c**) Effective mobility versus effective field.

Fig. 5. I_{cp} as a function of gate pulse amplitude.

